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1 Game-theoretic preliminaries

In this tutorial we detail a proof of Nash’s famous theorem on the existence of Nash

equilibria in finite games, first proving Sperner’s lemma and Brouwer’s fixed-point

theorem. We begin with the definition of a finite game.

Definition 1 (Normal-form game) A (finite, n-person) normal-form game is a tuple

(N, A, O, µ, u), where

• N is a finite set of n players, indexed by i;

• A = (A1, . . . , An), where Ai is a finite set of actions (or pure strategies; we action, or pure

strategywill use the terms interchangeably) available to player i. Each vector a =
(a1, . . . , an) ∈ A is called an action profile (or pure strategy profile);

action profile

pure strategy

profile

• O is a set of outcomes;

• µ : A → O determines the outcome as a function of the action profile; and

• u = (u1, . . . , un) where ui : O → R is a real-valued utility (or payoff) function
utility function

payoff function

for player i.

Often we do not need the notion of an outcome as distinct from a strategy profile.

In such cases the game has the simpler form N, A, u, and in the remainder of the article

we will adopt this form.

We have so far defined the actions available to each player in a game, but not yet

his set of strategies, or his available choices. Certainly one kind of strategy is to select

a single action and play it. We call such a strategy a pure strategy. We call a choice of pure strategy

pure strategy for each agent a pure strategy profile.

Players could also follow another, less obvious type of strategy: randomizing over

the set of available actions according to some probability distribution. Such a strategy

is called a mixed strategy. Although it may not be immediately obvious why a player

should introduce randomness into his choice of action, in fact in a multiagent setting

the role of mixed strategies is critical.

We define a mixed strategy for a normal form game as follows.

1



Definition 2 (Mixed strategy) Let (N, (A1, . . . , An), O, µ, u) be a normal form game,

and for any set X let Π(X) be the set of all probability distributions over X . Then the

set of mixed strategies for player i is Si = Π(Ai). mixed strategy

Definition 3 (Mixed strategy profile) The set of mixed strategy profiles is simply the mixed strategy

profileCartesian product of the individual mixed strategy sets, S1 × · · · × Sn.

By si(ai) we denote the probability that an action ai will be played under mixed

strategy si. The subset of actions that are assigned positive probability by the mixed

strategy si is called the support of si.

Definition 4 (Support) The support of a mixed strategy si for a player i is the set of support of a

mixed strategypure strategies {ai|si(ai) > 0}.

Note that a pure strategy is a special case of a mixed strategy, in which the support

is a single action.

We have not yet defined the payoffs of players given a particular strategy profile,

since the payoff matrix defines those directly only for the special case of pure strategy

profiles. But the generalization to mixed strategies is straightforward, and relies on

the basic notion of decision theory—expected utility. Intuitively, we first calculate the expected utility

probability of reaching each outcome given the strategy profile, and then we calculate

the average of the payoffs of the outcomes, weighted by the probabilities of each out-

come. Formally, we define the expected utility as follows (overloading notation, we

use ui for both utility and expected utility).

Definition 5 (Expected utility of a mixed strategy) Given a normal form game (N, A, u),
the expected utility ui for player i of the mixed strategy profile s = (s1, . . . , sn) is de-

fined as

ui(s) =
∑

a∈A

ui(a)

n
∏

j=1

sj(aj).

Now we will look at games from an individual agent’s point of view, rather than

from the vantage point of an outside observer. This will lead us to the most influential

solution concept in game theory, the Nash equilibrium.

Our first observation is that if an agent knew how the others were going to play,

his strategic problem would become simple. Specifically, he would be left with the

single-agent problem of choosing a utility-maximizing action. Formally, define s−i =
(s1, . . . , si−1, si+1, . . . , sn), a strategy profile s without agent i’s strategy. Thus we

can write s = (si, s−i). If the agents other than i were to commit to play s−i, a

utility-maximizing agent i would face the problem of determining his best response.

Definition 6 (Best response) Player i’s best response to the strategy profile s−i is a best response

mixed strategy s∗i ∈ Si such that ui(s
∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

The best response is not necessarily unique. Indeed, except in the extreme case

in which there is a unique best response that is a pure strategy, the number of best
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responses is always infinite. When the support of a best response s∗ includes two or

more actions, the agent must be indifferent between them—otherwise the agent would

prefer to reduce the probability of playing at least one of the actions to zero. But

thus any mixture of these actions must also be a best response, not only the particular

mixture in s∗. Similarly, if there are two pure strategies that are individually best

responses, any mixture of the two is necessarily also a best response.

Of course, in general an agent won’t know what strategies the other players will

adopt. Thus, the notion of best response is not a solution concept—it does not identify

an interesting set of outcomes in this general case. However, we can leverage the idea

of best response to define what is arguably the most central notion in non-cooperative

game theory, the Nash equilibrium.

Definition 7 (Nash equilibrium) A strategy profile s = (s1, . . . , sn) is a Nash equi-

librium if, for all agents i, si is a best response to s−i. Nash equilibrium

Intuitively, a Nash equilibrium is a stable strategy profile: no agent would want to

change his strategy if he knew what strategies the other agents were following. This is

because in a Nash equilibrium all of the agents simultaneously play best responses to

each other’s strategies.

2 Proving the existence of Nash equilibria

In this section we prove that every game has at least one Nash equilibrium.

Definition 8 (Convexity) A set C ⊂ Rm is convex if for every x, y ∈ C and λ ∈ [0, 1], convexity

λx+(1−λ)y ∈ C. For vectors x0, . . . , xn and nonnegative scalars λ0, . . . , λn satisfy-

ing
∑n

i=0 λi = 1, the vector
∑n

i=0 λix
i is called a convex combination of x0, . . . , xn. convex

combination
For example, a cube is a convex set in R3; a bowl is not.

Definition 9 (Affine independence) A finite set of vectors {x0, . . . , xn} in an Eu-

clidean space is affinely independent if
∑n

i=0 λix
i = 0 and

∑n

i=0 λi = 0 imply that affine

independenceλ0 = . . . = λn = 0.

An equivalent condition is that {x1−x0, x2−x0, . . . , xn−x0} are linearly independent.

Intuitively, a set of points is affinely independent if no three points from the set lie on

the same line, no four points from the set lie on the same plane, and so on. For example,

the set consisting of the origin 0 and the unit vectors e1, . . . , en is affinely independent.

Next we define a simplex, which is an n-dimensional generalization of a triangle.

Definition 10 (n-simplex) An n-simplex, denoted x0 · · ·xn, is the set of all convex n-simplex

combinations of the affinely independent set of vectors {x0, . . . , xn}, i.e.

x0 · · ·xn =

{

n
∑

i=0

λix
i : ∀i ∈ {0, . . . , n}, λi ≥ 0; and

n
∑

i=0

λi = 1

}

.

Each xi is called a vertex of the simplex x0 · · ·xn and each k-simplex xi0 · · ·xik vertex

is called a k-face of x0 · · ·xn, where i0, . . . , ik ∈ {0, . . . , n}.
k-face
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Definition 11 (Standard n-simplex) The standard n-simplex △n is {y ∈ R
n+1 : standard

n-simplex
∑n

i=0 yi = 1, ∀i = 0, . . . , n, yi ≥ 0}.

In other words, the standard n-simplex is the set of all convex combinations of the

n + 1 unit vectors e0, . . . , en.

Definition 12 (Simplicial subdivision) A simplicial subdivision of an n-simplex T is simplicial

subdivisiona finite set of simplexes {Ti} for which
⋃

Ti∈T Ti = T , and for any Ti, Tj ∈ T , Ti ∩Tj

is either empty or equal to a common face.

Intuitively, this means that a simplex is divided up into a set of smaller simplexes

that together occupy exactly the same region of space and that overlap only on their

boundaries. Furthermore, when two of them overlap, the intersection must be an en-

tire face of both subsimplexes. Figure 1 (left) shows a 2-simplex subdivided into 16

subsimplexes.

Let y ∈ x0 · · ·xn denote an arbitrary point in a simplex. This point can be written

as a convex combination of the vertices: y =
∑

i λix
i. Now define a function that

gives the set of vertices “involved” in this point: χ(y) = {i : λi > 0}. We use this

function to define a proper labeling.

Definition 13 (Proper labeling) Let T = x0 · · ·xn be simplicially subdivided, and let

V denote the set of all distinct vertices of all the subsimplexes. A function L : V →
{0, . . . , n} is a proper labeling of a subdivision if L(v) ∈ χ(v). proper labeling

One consequence of this definition is that the vertices of a simplex must all receive

different labels. (Do you see why?) As an example, the subdivided simplex in Figure 1

(left) is properly labeled.

Definition 14 (complete labeling) A subsimplex is completely labeled if L assumes completely

labeled

subsimplex
all the values 0, . . . , n on its set of vertices.

For example in the subdivided triangle in Figure 1 (left), the sub-triangle at the very

top is completely labeled.

Lemma 15 (Sperner’s lemma) Let Tn = x0 · · ·xn be simplicially subdivided and let Sperner’s lemma

L be a proper labeling of the subdivision. Then there are an odd number of completely

labeled subsimplexes in the subdivision.

Proof. We prove this by induction on n. The case n = 0 is trivial. The simplex

consists of a single point x0. The only possible simplicial subdivision is {x0}.

There is only one possible labeling function, L(x0) = 0. Note that this is a proper

labeling. So there is one completely labeled subsimplex, x0 itself.

We now assume the statement to be true for n− 1 and prove it for n. The sim-

plicial subdivision of Tn induces a simplicial subdivision on its face x0 · · ·xn−1.

This face is an (n − 1)-simplex; denote it as Tn−1. The labeling function L re-

stricted to Tn−1 is a proper labeling of Tn−1. Therefore by the induction hypothe-

sis there exist an odd number of (n− 1)-subsimplexes in Tn−1 that bear the labels
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Figure 1: A properly labeled simplex (left), and the same simplex with completely-

labeled subsimplexes shaded and three walks indicated (right).

(0, . . . , n − 1). (To provide graphical intuition, we will illustrate the induction ar-

gument on a subdivided 2-simplex. In Figure 1 (left), observe that the bottom face

x0x1 is a subdivided 1-simplex—a line segment—containing four subsimplexes,

three of which are completely labeled.)

We now define rules for “walking” across our subdivided, labeled simplex Tn.

The walk begins at an (n − 1)-subsimplex with labels (0, . . . , n − 1) on the face

Tn−1; call this subsimplex b. There exists a unique n-subsimplex d that has b as a

face; d’s vertices consist of the vertices of b and another vertex z. If z is labeled n,

then we have a completely labeled subsimplex and the walk ends. Otherwise, d has

the labels (0, . . . , n − 1), where one of the labels (say j) is repeated, and the label

n is missing. In this case there exists exactly one other (n − 1)-subsimplex that is

a face of d and bears the labels (0, . . . , n − 1). This is because each (n − 1)-face

of d is defined by all but one of d’s vertices; since only the label j is repeated, an

(n − 1)-face of d has labels (0, . . . , n − 1) if and only if one of the two vertexes

with label j is left out. We know b is one such face, so there is exactly one other,

which we call e. (For example, you can confirm in Figure 1 (left) that if a sub-

triangle has an edge with labels (0, 1), then it is either completely labeled, or it has

exactly one other edge with labels (0, 1).) We continue the walk from e. We make

use of the following property: an (n− 1)-face of an n-subsimplex in a simplicially

subdivided simplex Tn is either on an (n − 1)-face of Tn, or the intersection of

two n-subsimplexes. If e is on an (n − 1)-face of Tn we stop the walk. Otherwise

we walk into the unique other n-subsimplex having e as a face. This subsimplex

is either completely labeled or has one repeated label, and we continue the walk in

the same way we did with subsimplex d above.

Note that the walk is completely determined by the starting (n−1)-subsimplex.

The walk ends either at a completely labeled n-subsimplex, or at a (n − 1)-
subsimplex with labels (0, . . . , n − 1) on the face Tn−1. (It cannot end on any

other face because L is a proper labeling.) Note also that every walk can be fol-

lowed backwards: beginning from the end of the walk and following the same rule

as above, we end up at the starting point. This implies that if a walk starts at t on
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Tn−1 and ends at t′ on Tn−1, t and t′ must be different, because otherwise we could

reverse the walk and get a different path with the same starting point, contradicting

the uniqueness of the walk. (Figure 1 (right) illustrates one walk of each of the

kinds we have discussed so far: one that starts and ends at different subsimplexes

on the face x0x1, and one that starts on the face x0x1 and ends at a completely

labeled sub-triangle.) Since by the induction hypothesis there are an odd number

of (n − 1)-subsimplexes with labels (0, . . . , n − 1) at the face Tn−1, there must

be at least one walk that does not end on this face. Since walks that start and end

on the face “pair up”, there are thus an odd number of walks starting from the face

that end at completely labeled subsimplexes. All such walks end at different com-

pletely labeled subsimplexes, because there is exactly one (n − 1)-simplex face

labeled (0, . . . , n−1) for a walk to enter from in a completely labeled subsimplex.

Not all completely labeled subsimplexes are led to by such walks. To see why,

consider reverse walks starting from completely labeled subsimplexes. Some of

these reverse walks end at (n − 1)-simplexes on Tn−1, but some end at other

completely labeled n-subsimplexes. (Figure 1 (right) illustrates one walk of this

kind.) However, these walks just pair up completely labeled subsimplexes. There

are thus an even number of completely labeled subsimplexes that pair up with

each other, and an odd number of completely labeled subsimplexes that are led to

by walks from the face Tn−1. Therefore the total number of completely labeled

subsimplexes is odd.

Definition 16 (Compactness) A subset ofRn is compact if the set is closed and bounded. compactness

It is straightforward to verify that △m is compact. A compact set has the property that

every sequence in the set has a convergent subsequence.

Definition 17 (Centroid) The centroid of a simplex x0 · · ·xm is the “average” of its centroid

vertices, 1
m+1

∑m

i=0 xi.

We are now ready to use Sperner’s lemma to prove Brouwer’s fixed point theorem.

Theorem 18 (Brouwer’s fixed point theorem) Let f : △m → △m be continuous. Brouwer’s fixed

point theoremThen f has a fixed point—that is, there exists some z ∈ △m such that f(z) = z.

Proof. We prove this by first constructing a proper labeling of △m, then showing

that as we make finer and finer subdivisions, there exist a subsequence of com-

pletely labeled subsimplexes that converges to a fixed point of f .

Part 1: L is a proper labeling. Let ǫ > 0. We simplicially subdivide △m such

that the Euclidean distance between any two points in the same m-subsimplex is at

most ǫ. We define a labeling function L : V → {0, . . . , m} as follows. For each v

we choose a label satisfying

L(v) ∈ χ(v) ∩ {i : fi(v) ≤ vi}, (1)

where vi is the ith component of v and fi(v) is the ith component of f(v). In other

words, L(v) can be any label i such that vi > 0 and f weakly decreases the ith
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component of v. To ensure that L is well-defined, we must show that the intersec-

tion on the right side of Equation (1) is always nonempty. (Intuitively, since v and

f(v) are both on the standard simplex △m, and on △m each point’s components

sum to 1, there must exist a component of v that is weakly decreased by f . This

intuition holds even though we restrict to the components in χ(v) because these

are exactly all the positive components of v.) We now show this formally. For

contradiction, assume otherwise. This assumption implies that fi(v) > vi for all

i ∈ χ(v). Recall from the definition of a standard simplex that
∑m

i=0 vi = 1. Since

by the definition of χ, vj > 0 if and only if j ∈ χ(v), we have

∑

j∈χ(v)

vj =

m
∑

i=0

vi = 1. (2)

Since fj(v) > vj for all j ∈ χ(v),

∑

j∈χ(v)

fi(v) >
∑

j∈χ(v)

vj = 1. (3)

But since f(v) is also on the standard simplex △m,

∑

j∈χ(v)

fi(v) ≤

m
∑

i=0

fi(v) = 1. (4)

Equations (3) and (4) lead to a contradiction. Therefore L is well-defined; it is a

proper labeling by construction.

Part 2: As ǫ → 0, completely labeled subsimplexes converge to fixed points

of f . Since L is a proper labeling, by Sperner’s lemma (15) there is at least one

completely labeled subsimplex p0 · · · pm such that fi(p
i) ≤ pi for each i. Let

ǫ → 0 and consider the sequence of centroids of completely labeled subsimplexes.

Since △m is compact, there is a convergent subsequence. Let z be its limit; then for

all i = 0, . . . , m, pi → z as ǫ → 0. Since f is continuous we must have fi(z) ≤ zi

for all i. This implies f(z) = z, because otherwise (by an argument similar to the

one in Part 1) we would have 1 =
∑

i fi(z) <
∑

i zi = 1, a contradiction.

Theorem 18 cannot be used directly to prove the existence of Nash equilibria. This

is because a Nash equilibrium is a point in the set of mixed strategy profiles S. This set

is not a simplex but rather a simplotope: a Cartesian product of simplexes. (Observe simplotope

that each individual agent’s mixed strategy can be understood as a point in a simplex.)

However, it turns out that Brouwer’s theorem can be extended beyond simplexes to

simplotopes.1 In essence, this is because every simplotope is topologically the same as

a simplex (formally, they are homeomorphic).

Definition 19 (Bijective function) A function f is injective (or one-to-one) if f(a) =

1An argument similar to our proof below can be used to prove a generalization of Theorem 18 to arbitrary

convex and compact sets.
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f(b) implies a = b. A function f : X → Y is onto if for every y ∈ Y there exists

x ∈ X such that f(x) = y. A function is bijective if it is both injective and onto. bijective

Definition 20 (Homeomorphism) A set A is homeomorphic to a set B if there exists homeomorphism

a continuous, bijective function h : A → B such that h−1 is also continuous. Such a

function h is called a homeomorphism.

Definition 21 (Interior) A point x is an interior point of a set A ⊂ R
m if there is an

open m-dimensional ball B ⊂ R
m centered at x such that B ⊂ A. The interior of a interior

set A is the set of all its interior points.

Corollary 22 (Brouwer’s fixed point theorem, simplotopes) Let K =
∏k

j=1 △mj

be a simplotope and let f : K → K be continuous. Then f has a fixed point.

Proof. Let m =
∑k

j=1 mj . First we show that if K is homeomorphic to △m,

then a continuous function f : K → K has a fixed point. Let h : △m → K be a

homeomorphism. Then h−1 ◦ f ◦ h : △m → △m is continuous, where ◦ denotes

function composition. By Theorem 18 there exists a z′ such that h−1 ◦ f ◦h(z′) =
z′. Let z = h(z′), then h−1 ◦ f(z) = z′ = h−1(z). Since h−1 is injective,

f(z) = z.

We must still show that K =
∏k

j=1 △mj
is homeomorphic to △m. K is convex

and compact because each △mj
is convex and compact, and a product of convex

and compact sets is also convex and compact. Let the dimension of a subset of

an Euclidean space be the number of independent parameters required to describe

each point in the set. For example, an n-simplex has dimension n. Since each △mj

has dimension mj , K has dimension m. Since K ⊂ R
m+k and △m ⊂ R

m+1

both have dimension m, they can be embedded inRm as K ′ and △′
m respectively.

Furthermore, whereas K ⊂ Rm+k and △m ⊂ Rm+1 have no interior points, both

K ′ and △′
m have non-empty interior. For example, a standard 2-simplex is defined

in R3, but we can embed the triangle in R2. As illustrated in Figure 2 (left), the

product of two standard 1-simplexes is a square, which can also be embedded in

R. We scale and translate K ′ into K ′′ such that K ′′ is strictly inside △′
m. Since

scaling and translation are homeomorphisms, and a chain of homeomorphisms is

still a homeomorphism, we just need to find a homeomorphism h : K ′′ → △′
m.

Fix a point a in the interior of K ′′. Define h to be the “radial projection” with

respect to a, where h(a) = a and for x ∈ K ′′ \ {a},

h(x) = a +
||x′ − a||

||x′′ − a||
(x − a),

where x′ is the intersection point of the boundary of △′
m with the ray that starts at

a and passes through x, and x′′ is the intersection point of the boundary of K ′′ with

the same ray. Because K ′′ and △′
m are convex and compact, x′′ and x′ exist and

are unique. Since a is an interior point of K ′′ and △m, ||x′ − a|| and ||x′′ − a|| are

both positive. Intuitively, h scales x along the ray by a factor of
||x′−a||
||x′′−a|| . Figure 2

(right) illustrates an example of this radial projection from a square simplotope to

a triangle.
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Figure 2: A product of two standard 1-simplexes is a square (a simplotope; left). The

square is scaled and put inside a triangle (a 2-simplex), and an example of radial pro-

jection h is shown (right).

Finally, it remains to show that h is a homeomorphism. It is relatively straight-

forward to verify that h is continuous. Since we know that h(x) lies on the ray that

starts at a and passes through x, given h(x) we can reconstruct the same ray by

drawing a ray from a which passes through h(x). We can then recover x′ and x′′,

and find x by scaling h(x) along the ray by a factor of
||x′′−a||
||x′−a|| . Thus h is injective.

h is onto because given any point y ∈ △′
m, we can construct the ray and find x

such that h(x) = y. So h−1 has the same form as h except that the scaling factor

is inverted, thus h−1 is also continuous. Therefore h is a homeomorphism.

We are now ready to prove the existence of Nash equilibrium. Indeed, now that

we have Corollary 22 and notation for discussing mixed strategies (Section 1), it is

surprisingly easy. The proof proceeds by constructing a continuous f : S → S such

that each fixed point of f is a Nash equilibrium. Then we use Corollary 22 to argue

that f has at least one fixed point, and thus that Nash equilibria always exist.

Theorem 23 (Nash 1951) Every game with a finite number of players and action pro-

files has at least one Nash equilibrium.

Proof. Given a strategy profile s ∈ S, for all i ∈ N and ai ∈ Ai we define

ϕi,ai
(s) = max{0, ui(ai, s−i) − ui(s)}.

We then define the function f : S → S by f(s) = s′, where

s′i(ai) =
si(ai) + ϕi,ai

(s)
∑

bi∈Ai
si(bi) + ϕi,bi

(s)

=
si(ai) + ϕi,ai

(s)

1 +
∑

bi∈Ai
ϕi,bi

(s)
. (5)
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Intuitively, this function maps a strategy profile s to a new strategy profile s′ in

which each agent’s actions that are better responses to s receive increased proba-

bility mass.

The function f is continuous since each ϕi,ai
is continuous. Since S is convex

and compact and f : S → S, by Corollary 22 f must have at least one fixed point.

We must now show that the fixed points of f are the Nash equilibria.

First, if s is a Nash equilibrium then all ϕ’s are 0, making s a fixed point of f .

Conversely, consider an arbitrary fixed point of f , s. By the linearity of ex-

pectation there must exist at least one action in the support of s, say a′
i, for which

ui,a′

i
(s) ≤ ui(s). From the definition of ϕ, ϕi,a′

i
(s) = 0. Since s is a fixed point

of f , s′i(a
′
i) = si(a

′
i). Consider Equation (5), the expression defining s′i(a

′
i). The

numerator simplifies to si(a
′
i), and is positive since a′

i is in i’s support. Hence the

denominator must be 1. Thus for any i and bi ∈ Ai, ϕi,bi
(s) must equal 0. From

the definition of ϕ, this can only occur when no player can improve his expected

payoff by moving to a pure strategy. Therefore s is a Nash equilibrium.

3 History and references

In 1950 John Nash introduced the concept of what would become known as the “Nash

equilibrium” [Nash, 1950; Nash, 1951], without a doubt the most influential concept

in game theory to this date. The proof in [Nash, 1950] uses Kakutani’s fixed point

theorem; our proof of Theorem 23 follows [Nash, 1951]. Lemma 15 is due to Sperner

[1928] and Theorem 18 is due to Brouwer [1912]; our proofs follow Border [1985]. We

thank Éva Tardos and Tim Roughgarden for making available notes that we drew on for

our proofs of Sperner’s lemma and the general form of Brouwer’s fixed-point theorem,

respectively. This report is an excerpt from [Shoham & Leyton-Brown, 2007].
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