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Motivation: Game Theory for Security 

Limited security resources: Selective checking 

Adversary monitors defenses, exploits patterns 

 

LAX 

50 miles 



Many Targets      Few Resources 

How to assign limited resources  

to defend the targets? 

Game Theory: Bayesian Stackelberg Games 
 



Game Theory: Bayesian Stackelberg Games 

Security allocation: (i) Target weights; (ii) Opponent reaction 

 Stackelberg: Security forces commit first 

 Bayesian: Uncertain adversary types 

Optimal security allocation: Weighted random 

 Strong Stackelberg Equilibrium (Bayesian) 

NP-hard (Conitzer/Sandholm ‘06) 

Terminal 

#1 

Terminal 

#2 

Terminal #1 5, -3  -1, 1 

Terminal #2 -5, 5 2, -1 

Police 

Adversary 



ARMOR: Deployed at LAX 2007 
 

“Assistant for Randomized Monitoring Over Routes” 

Problem 1: Schedule vehicle checkpoints 

Problem 2: Schedule canine patrols 

Randomized schedule: (i) target weights; (ii) surveillance 
 

ARMOR-Checkpoints ARMOR-K9 



ARMOR Canine: Interface 

 



Federal Air Marshals Service (FAMS) 

Flights (each day) 

~27,000 domestic flights 

~2,000 international flights 

International Flights from  

Chicago O’Hare 

Not enough air marshals: 

Allocate air marshals to flights? 

Undercover, in-flight  

law enforcement 



 Massive scheduling problem 

 Adversary may exploit predictable schedules 

 Complex constraints: tours, duty hours, off-hours 

 

1.7 × 1013 combinations 

 

100 flights, 10 officers: 

Overall problem:  30000 
flights, 3000 officers 

 

Our focus: international sector 

 

Federal Air Marshals Service (FAMS) 



IRIS: “Intelligent Randomization  

in  International Scheduling”  (Deployed 2009) 



PROTECT (Boston and Beyond) 

US Coast Guard: Port Resilience Operational / Tactical 
Enforcement to Combat Terrorism 

Randomized patrols; deployed in Boston, with more to follow 

More realistic models of human behaviors 



Application in Transition: GUARDS 

 

GUARDS: under evaluation for 
national deployment 

Transportation Security Administration 

Protect over 400 airports 

Limited security resources 

Numerous security measures 

Diverse potential threats 

Adaptive adversary 



International Interest: Mumbai 

Protect networks  

 

http://www.chicagonow.com/blogs/dennis-byrne-barbershop/assets_c/2009/12/Mumbai-thumb-550x301-41266.jpg


Urban Road Network Security 

Southern Mumbai 



15 

Customs and Border 
Protection 

Cybersecurity 

Forest/environmental 
protection 

Economic 
leader/follower models 

 

 

LA Sheriff’s dept (Crime 
suppression & ticketless 
travelers):  

Beyond Counterterrorism: Other Domains 



Research Challenges 

Scalable algorithms 

Rich representations; networks 

Payoff uncertainty, robustness 

Imperfect surveillance 

Evaluation of deployed systems 

Human behavior, bounded rationality 

Explaining game theory solutions 

… 

 



Publications 

 

 

 

 

 

 

 

Publications ~40 rigorously 

reviewed papers: 
• AAMAS’ [06-12: (15)] 

• AAAI[08,10-12: (10)] 

• IJCAI’11: (2) 

• ECAI’12: (1) 

• IAAI’12: (1) 

• JAIR’11 

• JAAMAS’12 

• AI Journal’10, 12 

• Interfaces’10 

• AI Magazine’09,12… 

• Journal ITM’09 
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Games 

Players:  

1, … , n 

focus on 2 players 

Strategies 

ai 2 Ai 

a = (a1,...,an) 2 A 

Utility function 

ui : A ! R 

 



Security Games 

Two players 

Defender: Θ 

Attacker: ψ 

Set of targets: T 

Set of resources: R 

Defender assigns resources to protect targets 

Attacker chooses one target to attack 

Payoffs define the reward/penalty for each player for a successful or 
unsuccessful attack on each target 



Zero-Sum Payoffs? 

Are security games always zero-sum? 

NO! 

In real domains attackers and defenders often have different preferences 
and criteria 

Weighting casualties, economic consequences, symbolic value, etc. 

Player may not care about the other’s cost (e.g., cost of security, cost 
of carrying out an attack) 

We often make a weaker assumption: 

An attack on a defended target is better than an attack on the same 
target if it is undefended (for the defender) 

The opposite holds for attackers (attackers prefer to attack undefended 
targets) 

 

 



Security Game 

2 players 

2 targets 

1 defender resource 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 



Game Solutions 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 

Best Response 
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Game Solutions 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 

Best Response 



Game Solutions 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 

Mixed Strategy 

50% 

50% 



Game Solutions 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 

Nash Equilibrium 
 

A mixed strategy for each 

player such that no player benefits  

from a unilateral deviation  



Game Solutions 

Target 1 

Target1 

Target 2 

Target 2 

1, -1 

-1, 1 

-2, 2 

2, -1 

Nash Equilibrium 
 

A mixed strategy for each 

player such that no player benefits  

from a unilateral deviation  

40% 

60% 

67% 33% 



Stackelberg Equilibrium 

{0.1,0.9} {0.5,0.5} 

2 1 

(-0.9, 0.9) (1.8, -0.9) 

2 1 

(0, 0) (0, -0.5) 

... ... 

Attackers use  

surveillance in  

planning attacks 

Defender  

commits to a 

mixed strategy 



Strong Stackelberg Equilibrium 

Strong Stackelberg Equilibrium (SSE) 

Break ties in favor of the defender 

Can often induce SSE by perturbing defender strategy 

More robust concepts 

Weak Stackelberg Equilibrium not guaranenteed to exist 

Payoff uncertainty 

Quantal response 

Equilibrium refinement 



Finding Stackelberg Equilibria 

The formulation above gives 

the maximum utility of the 

leader when the follower 

chooses action a 

The Stackelberg equilibrium is 

obtained by maximizing over 

all the possible pure strategies 

for player two 

Multi-linear programming formulation 

Conitzer and Sandholm, 2006  



Single LP formulation  
(Korzhyk & Conitzer 2011) 

Relaxation of the LP for correlated equilibrium 

removed player 1's incentive constraints 

Corollary: SSE leader expected utility at least that of best CE  



Research Challenges 

 

Scalability  

Large, complex strategy spaces 

Robustness  

Payoff & observation uncertainty 

Human decision-makers 

Not in this talk: 

Stackelberg equilibria for dynamic games (Letchford & 
Conitzer 2010, Letchford et al. 2012) 

Multiple objectives (Brown et al. 2012) 



Outline 

Motivating real-world applications 

Background and basic security games 

Scaling to complex action spaces 

Modeling payoff uncertainty: Bayesian Security Games 

Human behavior and observation uncertainty 

Evaluation and discussion 



 
Large Numbers of Defender Strategies 

 
 Strategy 1 Strategy 2 Strategy 3 

Strategy 1 

Strategy 2 

Strategy 3 

Strategy 4 

Strategy 5 

Strategy 6 

100 Flight tours 

10 Air Marshals 

1.73 x 1013 

Schedules: 

ARMOR 
out of memory 

FAMS: Joint Strategies 

or Combinations 

Don’t enumerate ALL joint strategies 

• Marginals (IRIS I & II) 

• Branch and price (IRIS III) 

Strategy 1 Strategy 2 Strategy 3 

Strategy 1 

Strategy 2 

Strategy 3 

Strategy 4 

Strategy 5 

Strategy 6 



IRIS I & II: Marginals Instead of Joint Strategies  

 

ARMOR

Actions 
Tour 
combos 

Prob 

1 1,2,3 x1 

2 1,2,4 x2 

3 1,2,5 x3 

… … … 

120 8,9,10 x120 

Compact
Action 

Tour Prob 

1 1 y1 

2 2 y2 

3 3 y3 

… … … 

10 10 y10 

Attack 

1 

Attack 

2 

Attack 

… 

Attack 

6 

1,2,3 5,-10 4,-8 … -20,9 

1,2,4 5,-10 4,-8 … -20,9 

1,3,5 5,-10 -9,5 … -20,9 

… … … … … 

ARMOR: 10 tours, 3 air marshals Payoff duplicates: Depends on target covered  

MILP similar to ARMOR, y instead of x: 

 10 instead of 120 variables 

  y1+y2+y3…+y10  = 3 

 Sample from “y”, not enumerate “x” 

 Only works for SIMPLE tours 

   (Korzhyk et al. 2010) 
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Max Defender Payoff 

Attacker Strategy 

 Definition 

Defender Strategy 

 Definition 

Best 

Responses 

IRIS II 



0 0 0 0 

Coverage Probability 

Four flights 
One marshal 
 
Zero Sum 
Attacker payoffs 

Uncovered Covered 

4 0 

3 0 

2 0 

1 0 

IRIS I 



0 0 0 0 

Coverage Probability 

Attack Set: 
Set of targets with 
maximal expected  
payoff for the  
attacker 

IRIS I 



0 0 0.5 0 

Coverage Probability 

Observation 1 
It never benefits 
the defender to  
add coverage outside the attack set. 

IRIS I 



0.25 0 0 0 

Coverage Probability 

Compute coverage 
necessary to make 
attacker indifferent 
between 3 and 4 

IRIS I 



0.5 0 0 0 

Coverage Probability 

Observation 2 
It never benefits the  
defender to add coverage to a subset  
of the attack set. 

IRIS I 



0.5 0.33 0 0 

Coverage Probability 

IRIS I 



0.75 0.66 0.5 0 

Coverage Probability 

Need more than one 
air marshal! 

IRIS I 



0.5 0.33 0 0 

Coverage Probability 

Can still assign 0.17 

IRIS I 



0.54 0.38 0.08 0 

Coverage Probability 

Allocate all remaining coverage to 
flights in the attack set 
 
Fixed ratio necessary for 
indifference 

IRIS I 



IRIS Speedups 

FAMS 

Ireland 

FAMS 

London 

 

ARMOR 

Actions 
ARMOR 

Runtime 

IRIS  

Runtime 

6,048 4.74s 0.09s 

85,275 ---- 1.57s 
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Targets 

Scaling with Targets: Compact 

ARMOR IRIS I IRIS II



IRIS III: Branch and Price: 

Tours of Arbitrary Size 

Lower bound 1:  

Adversary best response 

 Target1  

Lower bound 2: 

 Adversary best response 

 Target2  

Lower bound N: 

Adversary best response 

 TargetN 

• Upper bounds: IRIS I 

• Column generation:  

       Network flow 

Branch & Price: Branch & Bound + Column Generation 

• Not out of the box 

   
Upper bound: 

Adversary  2…N 



         LEAF NODE: 
Incrementally build support 

        for mixed strategy 

IRIS III: Branch & Price 

Column Generation Quick Overview 

 

“Master” 

Problem 
(mixed integer 

program) 

 

 

“Slave” 

Problem 

Return the “best” joint schedule: 

 Minimum reduced cost 

Target 3  Target 7  

… … 

Resource  Sink 

Capacity 1 on all links 

(N+1)th pure 

Strategy 

Solution supported  

by N pure strategies 

Minimum cost network flow 

Lower bound 1:  

AdversaryTarget1  

Lower bound 2: 

 AdversaryTarget2  

Lower bound N 

Adversary  TargetN  



IRIS Results 
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Number of Resources 

Scale-up (200 Targets, 1000 schedules) 

2 Targets/Schedule

3 Targets/Schedule

4 Targets/Schedule

5 Targets/Schedule

ARMOR  

Runs out of memory 



Los Angeles Metro Rail System 

Barrier-free system with random inspections 

Approximately 300,000 daily riders, ≈6% fare evaders 

Fare evasion costs ≈ $5.6 million annually (Booz Allen Hamilton 
2007) 

Fare Checking in LA Metro 

(Yin et al. 2012) 



 

 

 

 

 

 

 

 

What is a pure strategy of the defender? 

 

How to Model? 



 

 

 

 

 

 

 

 

What is a pure strategy of the defender? 

 

How to Model? 

Check fares at “Mission” station 



 

 

 

 

 

 

 

 

What is a pure strategy of the defender? 

 

How to Model? 

Check fares at “Mission” 

Go to “Southwest Museum”  

Check fares at “Southwest Museum”  

 



 

 

 

 

 

 

 

 

What is a pure strategy of the defender? 

 

How to Model? 

Check fares at “Mission” from 7am to 7:50am 

Go to “Southwest Museum” at 7:50am 

Check fares at “Southwest Museum”  from 8am to 9am 

 



 

 

 

 

 

 

 

 

What is a pure strategy of the defender? 

 

How to Model? 

Check fares at “Mission” from 7am to 7:50am 

Go to “Southwest Museum” at 7:50am 

Check fares at “Southwest Museum”  from 8am to 9am 

 
How many such pure strategies? 

 



Transition graph 

 

 

 

 

 

Problem Setting 

Vertex: station and time pair 



Transition graph 

 

 

 

 

 

Problem Setting 

Edge: inspection action 



Transition graph 

 

 

 

 

 

Problem Setting 

Edge: inspection action 



Transition graph 

 

 

 

 

 

Problem Setting 

Edge: inspection action 

 le - action duration 

 fe - fare-check effectiveness 



Transition graph 

 

 

 

 

 

 

Problem Setting 

Patrols: bounded-length paths 



Transition graph 

 

 

 

 

 

 

Problem Setting 

Patrols: bounded-length paths 

 γ – patrol units 

 κ – patrol hours per unit 



Riders: multiple types 

Each type takes fixed route 

Fully observes the probability of being inspected 

Binary decision: buy or not buy the ticket 

Perfectly rational and risk-neutral 

Problem Setting cont. 



Riders: multiple types 

Each type takes fixed route 

Fully observes the probability of being inspected 

Binary decision: buy or not buy the ticket 

Perfectly rational and risk-neutral 

Problem Setting cont. 

Why do we 

need this edge? 



Based on transition graph 

Strategy representation: marginal coverage on edges 

 

 

 

 

 

Basic Compact Formulation 

0.8 

0.4 

0.4 

0.2 

0.4 

0.2 



Based on transition graph 

Strategy representation: marginal coverage on edges 

 

 

 

 

 

Basic Compact Formulation 

0.2 

0.4 

0.2 



Transition graph: G = ˂V, E˃ 

Dummy source v+, possible starting vertices V+ 

Dummy sink v-, possible ending vertices V- 

 

Basic Compact Formulation 



Patrol length may not be bounded by κ 

E.g., γ = 1, κ = 1 

 

 

 

 

 
 

Issues with Basic Compact Formulation 

v+ v1 v2 v3 v- 

0.5 

0.5 0.5 0.5 1 

0 

0 
0 



Patrol length may not be bounded by κ 

E.g., γ = 1, κ = 1 

 

 

 

 

 

0.5, v+ → v3 → v- 

0.5, v+ → v1 → v2 → v3 → v- 

Issues with Basic Compact Formulation 

v+ v1 v2 v3 v- 

0.5 

0.5 0.5 0.5 1 

0 

0 
0 



History-duplicate transition graph 

Store history information in vertices 

Access necessary patrol information without exponential blowup 

Extended Compact Formulation 



History-duplicate transition graph 

Store history information in vertices 

Access necessary patrol information without exponential blowup 

E.g., to forbid patrols longer than 2 hours 

What information should be duplicated? 

Extended Compact Formulation cont. 



History-duplicate transition graph 

Store history information in vertices 

Access necessary patrol information without exponential blowup 

E.g., to forbid patrols longer than 2 hours 

2 subgraphs corresponding to 2 starting time: 6pm and 7pm 

Extended Compact Formulation cont. 

A ,  7 PM 
( 6 PM ) 

B ,  7 PM 
( 6 PM ) 

C ,  7 PM 
( 6 PM ) 

B ,  8 PM 
( 6 PM ) 

A ,  6 PM 
( 6 PM ) 

B ,  6 PM 
( 6 PM ) 

C ,  6 PM 
( 6 PM ) 

A ,  8 PM 
( 6 PM ) 

C ,  8 PM 
( 6 PM ) 

A ,  7 PM 
( 7 PM ) 

B ,  7 PM 
( 7 PM ) 

C ,  7 PM 
( 7 PM ) 

C ,  9 PM 
( 7 PM ) 

B ,  9 PM 
( 7 PM ) 

A ,  9 PM 
( 7 PM ) 

B ,  8 PM 
( 7 PM ) 

A ,  8 PM 
( 7 PM ) 

C ,  8 PM 
( 7 PM ) 
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Target 1 Target 2 Target 3 Target 4 

Defender 

Reward 
1 0 -1 3 

Defender 

Penalty 
-1 -4 -6 -10 

Attacker 

Penalty 
-2 -3 -3 -5 

Attacker  

Reward 
1 3 5 9 

Robustness 

How do we know the model is correct? 

 

If it is not exactly correct, how robust is the solution? 



What is the attacker’s value for a successful attack on a 
particular target? 

What is the likely number of casualties? 

What is the economic cost? 

What is the value of the media exposure? 

What is the symbolic value of the attack? 

How should these factors be weighted? 
 

Answers can only be estimated 

Estimating Target Values 



Players 

How many? 

Model organizations as individuals? 

Specific people or generic types of 
people? 

Are players rational? 

If not, how do they behave? 

 

Actions 

What is the set of feasible actions? 

Do players know all of the actions? 

If the set is infinite, how do we 
represent it? 

Are some actions similar to others? 

Are actions sequential? 

Payoffs 

How do we determine payoffs? 

Are payoffs known to all players? 

What is the uncertainty about the 
payoffs? 

Are payoffs deterministic or 
stochastic? 

Do players care about risk? 

 

Solution concepts 

What to do if there are multiple 
equilibria? 

Do we care about the worst case? 

Bounded rationality 

Limited observability 

Can the solution be computed? 

Modeling Choices 



Game theorist’s perspective 

The model is given, and known to everyone 

We can model uncertainty explicitly by making the model 
more complex 

Engineer’s perspective: 

Do the math 

Add a “fudge factor” to for safety 

The cost is worth the risk reduction 

“Unknown unknowns” 

Confidence is critical 

Real problems force us to deal with 

robustness 

Robustness Perspectives 



Payoff uncertainty 

Conitzer et al 2006, Paruchuri et al 2008, Kiekintveld et 
al 2011, Jain et al 2011, Yin et al 2012, Kiekintveld at al 
2012, Brown et al 2012, … 

 

Human behavior 

Jain et al 2008, Pita et al 2009, Pita et al 2010, Yang et 
al 2011, Pita et al 2012, Yang et al 2012, … 

 

Observation/Execution uncertainty 

Yin et al 2010, Pita et al 2011, Yin et al 2011, An et al 
2012, … 

 

 

 

 

 

Research on Robustness 



Bayesian 

Models 
 

Finite Models 

Infinite Models 

Interval  

Models 

Modified Strategy  

Models 

Diverse Techniques 



Finite Bayesian Games 

Term #1 Term #2 

Term#1 5, -3  -1, 1 

Term#2 -5, 5 2, -1 

Term #1 Term #2 

Term#1 2, -1  -3, 4 

Term#2 -3, 1 3, -3 

Term #1 Term #2 

Term#1 4, -2  -1,0.5  

Term#2 -4, 3 1.5, -0.5 

P=0.3 P=0.5 P=0.2 

111 121 

 

112 

 

211 

 

… … … 222 

 

Termina

l #1 
3.3,-2.2  2.3,… 

Termina

l #2 
-3.8,2.6 …,… 

NP-Hard 

Harsanyi Transformation 



First optimization formulation for FBSG 

Basic idea: 

Enumerate attacker pure strategies 

Solve an LP to maximize leader’s payoff  

 

[Conitzer and Sandholm 2006] 

Multiple LPs Method 



Finite Bayesian Stackelberg Games 

a1 a2 

d1 
5, -

3 

 -1, 

1 

d2 
-5, 

5 
2, -1 

Type Type  

a1 a2 

d1 
1, -

2 

 -2, 

3 

d2 
-3, 

5 
3, -1 

Attacker 

Challenge: Exponential number of type combinations  



Handling Multiple Adversary Types: 

ARMOR 

Term #1 Term #2 

Term#1 5, -3  -1, 1 

Term#2 -5, 5 2, -1 

Term #1 Term #2 

Term#1 2, -1  -3, 4 

Term#2 -3, 1 3, -3 

Term #1 Term #2 

Term#1 4, -2  -1,0.5  

Term#2 -4, 3 1.5, -0.5 

P=0.3 P=0.5 P=0.2 
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ARMOR: Run-time Results 

•Multiple LPs 

 (Conitzer & Sandholm’06) 

 

• MIP-Nash 

 (Sandholm et al’05) 

• Sufficient for LAX 



Scaling Up: Hierarchical Solver (HBGS) 

• Efficient tree search 

– Bounds and pruning 

– Branching heuristics 

• Evaluate fewer LPs 

• Column generation 

– Consider restricted games 

– Solve much smaller LPs 

[Jain et al. 2011] 



Scaling Up: Hierarchical Solver (HBGS) 

 Each node in this tree 
represents a full 
Bayesian Stackelberg 
game 

 Can use column 
generation to solve 
these nodes 

• Key Idea: solve restricted games (few types) 

• Use solutions to generate bounds/heuristics 



Pruning 

 

 Theorem 1: If a pure strategy is infeasible in a “restricted” 
game, all its combinations are infeasible in the Bayesian 
game. 

 



Bounds and Branching Rules 

 Theorem 2: Leader payoff in the Bayesian game is upper 
bounded by the sum of leader payoffs in the corresponding 
restricted games.  

 



Column Generation 

Master Problem Slave Problem 

Defender and Attacker 

Optimization Constraints 

Scheduling Constraints 



HBGS Results 

Types Follower Pure Strategy Combinations Runtime (secs) 

10 9.7e7 0.41 

20 9.5e13 16.33 

30 9.3e20 239.97 

40 9.1e27 577.49 

50 8.9e34 3321.68 
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Approximation 
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Targets 

HBGS Approx 1
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HUNTER 

[Yin et al. 2012] 

• Improves on tree search from HBGS 

• Improved bounds (convex hulls on types) 

• Bender’s decomposition on LPs 



Finite vs Infinite BSG 

Finite games capture distinct attacker types 

Terrorists vs. local criminal activity 

Attackers with different motivations 

 

Infinite games capture distributional uncertainty 

E.g., Gaussian, Uniform distributions 

Natural for expressing beliefs over possible 
values 

Useful in knowledge acquisition from experts 

 



Distributional Payoff Representation 

target 2 

target T 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

target 

covered 
target 

uncovered 

..... 

coverage  

vector 

target 1 

[Kiekintveld et al. 2011] 



Problem 1 of 2 

target 2 

target T 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

target 

covered 
target 

uncovered 

..... 

target 1 20% 

80% 

50% 

given a coverage 

vector C... 
...and payoff distributions 



Problem 1 of 2 

target 2 

target T 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

Pb(payoff)   

payoff 0 

target 

covered 
target 

uncovered 

..... 

target 1 20% 

80% 

50% 

given a coverage 

vector C... 
...and payoff distributions 

attack 

vector 

A(C) 

? 



Problem 2 of 2 

find the optimal 

coverage vector C*. 

? 

... given A(C)  

for every C 

a1(C) 

  

a2(C)  

 

a3(C)  

 

 

... 

 

 

aT(C)  

 



Approach 

Coverage Vector 

? 

Attack Vector 

? 
(1) Monte-Carlo estimation 

(2) Numerical methods 

(1) Optimal Finite Algorithms 

(2) Sampled Replicator Dynamics 

(3) Greedy Monte-Carlo 

(4) Decoupled Target Sets 



Attacker Response Estimation 



Computing Coverage Vectors 

Baselines 

Mean (ignore uncertainty) 

Uniform Random 

Exact optimization given sampled types 

SBE (ARMOR variation) 

Worst-case optimization 

BRASS 

Approximate optimization 

Replicator Dynamics (SRD) 

Greedy Monte Carlo (GMC) 

Decoupled Target Sets (DTS) 



Assume  

Perfect Information 

Sample Types 

Exact Optimization 

Sample Types 

Approx Optimization 

Assuming perfect information is very brittle 

Approximate both type distribution and optimization  

Results for Distributional Games 



Beyond Bayesian Games 

Bayesian games are powerful 

General framework for model uncertainty 

Exact behavior predictions based on uncertainty 

 

Some limitations 

Require distributional information 

Even MORE parameters to specify! 

What if these are wrong? 

Computational challenges (NP-hard) 

Uncertainty about human decision making is hard 
to capture in Bayesian models 

 

 



Target 1 Target 2 Target 3 Target 4 

Defender 

Reward 
0 0 0 0 

Defender 

Penalty 
-1 -4 -6 -10 

Attacker 

Penalty 
0 0 0 0 

Attacker  

Reward 
[1,3] [2,5] [4,7] [6,10] 

• Attacker payoffs represented by intervals 

• Maximize worst case for defender 

• Distribution-free 

[Kiekintveld et al. 2012] 

Interval Security Games 



 

• Fast feasibility checks 

– Given resource constraint, can the defender 

guarantee a given payoff? 

– Exploits structure of security games 

 

• Binary search on defender payoffs 

 

• Polynomial time: O(n2 * log(1/ε)) 

 

 

[Kiekintveld et al. 2012] 

Polynomial Interval Solver 



0 0 0 0 0 

Defender Coverage 

5 Targets 

 

Bars represent range of  

possible attacker payoffs 

Attacker Payoffs 



0 0 0 0.5 0.5 

Defender Coverage 

When targets are covered, 

payoffs decrease and  

range shrinks 

Attacker Payoffs 



0 0 0 0.5 0.5 

Defender Coverage 

Given a coverage strategy, 

which set of targets could  

be attacked? 

R 

Minimum attacker payoff is R 

 

Any target with a possible value 

greater than R is in the  

potential attack set 

Potential Attack Set 



Main Idea: 

Design fast feasibility check to determine if a given defender payoff is 
possible 

Use binary search on defender payoffs 

Necessary resources increases monotonically with defender payoff  

 

Dmin Dmax D*
1 D*

2 D*
3 

Polynomial Algorithm 



Determine whether we can guarantee a defender payoff of D* using m or 
fewer resources 

 

Challenge: potential attack set depends on coverage, and number of possible 
sets is combinatorial 

 

 

 

 

Feasibility Checks 



For any potential attack set, there is some target t’ that determines the value 
of R 

 

We will guess which target is t’ and construct a minimal solution for this 
guess (n choices) 

 

As soon as we find a choice of t’ that works, we have a feasible solution 

 

 

 

 

Solution Idea 



0 0 0 0 0 

Defender Coverage 

Consider the selection 

t’ = t2 

Since t’ is in the PAS, 

it must give D* if attacked 

Calculate minimal 

coverage on t’ using: 

Constructing a Solution 



0 0 0.3 0 0 

Defender Coverage 

Consider the selection 

t’ = t2 

Since t’ is in the PAS, 

it must give D* if attacked 

Calculate minimal 

coverage on t’ using: 

R 

Constructing a Solution 



0 0 0.3 0 0 

Defender Coverage 

R 

For every other target t’’, 

consider two cases: 

 

1) Target is in the PAS 

2) Target is not in the PAS 

 

  

Constructing a Solution 



0 0 0.3 0 0 

Defender Coverage 

R 

For every other target t’’, 

consider two cases: 

 

1) Target is in the PAS 

2) Target is not in the PAS 

 

  Case 1 

Payoff for t’’ must  

be at least D* 

Constructing a Solution 



0 0 0.3 0.7 0 

Defender Coverage 

R 

For every other target t’’, 

consider two cases: 

 

1) Target is in the PAS 

2) Target is not in the PAS 

 

  Case 2 

Max payoff to attacker 

for t’’ must be < R 

Constructing a Solution 



0 0 0.3 0.4 0 

Defender Coverage 

R 

Final consistency check 

 

No target other than t’  

can have a higher 

minimum attacker payoff 

 

Otherwise, t’ does not set  

R contradicting the initial 

assumption 

Constructing a Solution 



0.2 0.5 0.3 0.4 0.7 

Defender Coverage 

R 

For each target, compute 

three coverage values 

 

c1: coverage for D* 

c2: coverage not in PAS 

c3: consistency with R 

 

Best value given by:  

Constructing a Solution 



0.2 0.5 0.3 0.4 0.7 

Defender Coverage 

R 

Need to check each  

target as t’ 

 

O(n2) worst case to test  

feasibility for D* 

 

Binary search on D 

 

O(n2 * log(1/ε))  

where ε is error term 

  

Analysis 



Interval Solver Scalability 

Fastest Bayesian solvers (HBGS, HUNTER)  

scale only to 10s or 100s of targets  



Outline 

Motivating real-world applications 

Background and basic security games 

Scaling to complex action spaces 

Modeling payoff uncertainty: Bayesian Security Games 

Human behavior and observation uncertainty 

Evaluation and discussion 



Key Topics 

PART I: Integrate models of human decision making as attacker’s 
response 

Key model used: 

 Anchoring bias and epsilon-bounded rationality 

 Prospect Theory [Kahneman and Tvesky, 1979] 

 Quantal Response [McKelvey and Palfrey, 1995] 

New efficient algorithms 

Results from experiments with human subjects 

 Quantal Response (QRE) outperforms other algorithms 

 

PART II: Impact of limited observations assuming rational attacker 



Uncertainty: Attacker Decision Bounded Rationality & 
Observations: Experimental Setup                           



Uncertainty: Human Bounded 

Rationality and Observations  

-4
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-1
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0

0.5

1

Unobserved 5 Observations 20 Observations Unlimited

Average expected reward 

DOBSS

MAXIMIN

Uniform

COBRA

COBRA-C

 178 total subjects, 2480 trials,  40 subjects for each setting 

 Four reward structures, four observation conditions 

 

DOBSS: Outperforms uniform random, similar to Maximin 

 



Uncertainty: Human Bounded 

Rationality and Observations  

COBRA:  

 “epsilon optimality” 

Anchoring bias: Full observation vs no observation: α 
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Prospect Theory  

Model human decision making under uncertainty 
 

Maximize the ‘prospect’ [Kahneman and Tvesky, 1979] 

 

 

 

π(·): weighting function 

V(·): value function 
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Empirical weighting function 

 

Slope gets steeper as x 
gets closer to 0 and 1 

Not consistent with 
probability definition 

 π(x)+π(1−x) < 1 

Empirical value: 

 γ=0.64 (0<γ<1) 

 



Compute Defender Strategy 

Piecewise Linear Approximation 
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Piecewise Linear Approximation

() function



Empirical value function 

 

Risk averse regarding 
gain 

Risk seeking 
regarding loss 

Empirical value: 

 α=β=0.88, λ=2.25 



BRPT: Best Response to PT 
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Mixed-Integer Linear Program 

Goal: maximize defender expected utility 

 



Quantal Response Equilibrium 

Error in individual’s response   

Still: more likely to select better choices than worse choices 

Probability distribution of different responses 

Quantal best response: 

 

 

 

λ: represents error level (=0 means uniform random) 

Maximal likelihood estimation (λ=0.76) 
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Solve the Nonlinear optimization problem 

Optimal Strategy against QR 



max
x

    
x iRij  e
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The Online Game 

Subjects are given $8 as 
the starting budget 

For each point they gain, 
$0.1 real money is paid  



Experiment Setting 

7 payoff structures  

4 new, 3 from previous tests with COBRA 

 

5 strategies for each payoff structure 

New methods: BRPT, RPT and BRQR 

Leading contender: COBRA 

Perfect rational baseline: DOBSS 

 

Subjects play all games (randomized orders) 

No feedback until subject finishes all games 



Average Defender Expected Utility 
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Average Defender Expected Utility 
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BRQR outperforms DOBSS in all 7 payoffs 

In payoff 1,3 and 4,  the result is statistically significant 
 

BRQR outperforms COBRA in all 7 payoffs 

In payoff 2,3 and 4, the result is statistically significant 
 

The poor performance BRPT is surprising! 

 

Result Summary 



Uncertainty in Adversary Decision:  

MATCH  

Builds on QR, exploiting security game structure: 

Like QR: Adversary response error; better choice more likely 

Bound loss to defender on adversary deviation  

MATCH 

wins 

Draw QR 

wins 

α = .05 42 52 6 

Results on 100 games 



Uncertainty in Attacker Surveillance:  

Stackelberg vs Nash 

Defender commits first: 

 Attacker conducts surveillance 

Stackelberg (SSE)  

 

 

 

 

 

Simultaneous move game: 

Attacker conducts no 
surveillance 

Mixed strategy Nash (NE) 

 

SSE 

NE = Minimax 

Set of defender strategies 

How should a defender compute her strategy? 

For security games (*): 



Action Execution & Observation Uncertainty 

RECON:  

Worst-case protection against action-execution & observation 
uncertainty 

Efficient MILP and heuristics 
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Motivating real-world applications 

Background and basic security games 
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How Do We Evaluate Deployed Systems? 

“Main” vs “Application track”: Evaluating deployed systems not easy 

Cannot switch security on/off for controlled experiments 

Cannot show we are “safe” (no 100% security) 

 

Are our systems useful: Are we better off than previous approaches? 

1. Models and simulations 

2. Human adversaries in the lab 

3. Actual security schedules before vs after 

4. Expert evaluation 

5. “Adversary” teams simulate attack 

6. Supportive data from deployment 

7. Future deployments 

 

 

 

 

 



Key Conclusions 

Human schedulers:  

Predictable patterns, e.g. LAX, FAMS (GAO-09-903T) 

Scheduling burden 

 

Uniform random: 

Non-weighted, e.g. officers to sparsely crowded terminals 

 

Simple weighted random: 

No adversary reactions, & enumerate large number of combinations? 

 

Systems in use for a number of years: without us “forcing” use 

Internal evaluations, e.g. LAX evaluation by FBI, foreign experts 

 



1. Models and Simulations:  

Example from IRIS (FAMS) 
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3. Actual Security Schedules Before vs After: 

Example from PROTECT (Coast Guard) 
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Patrols Before PROTECT: 

Boston 

Patrols After PROTECT: 

Boston 



4. Expert Evaluation  

Example from ARMOR, IRIS & PROTECT 
February 2009: Commendations 

LAX Police (City of Los Angeles) 

July 2011: Operational Excellence 

Award (US Coast Guard, Boston) 

September  2011: Certificate of 

Appreciation (US Federal Air 

Marshals Service) 



5. “Red” Teaming, Supportive data 

Example from PROTECT 

“Mock attacker” team deployed in Boston 

Incorporated adversary’s known intent, capability 

Comparing PRE- to POST-PROTECT: “deterrence” improved  

 

Additional real-world indicators from Boston: 

PRE- to POST-PROTECT: Actual reports of illicit activity 

Industry port partners comments: 

 “The Coast Guard seems to be everywhere, all the time."  

 (With no actual increase in the number of resources) 

 

 

 

 



6. What Happened at Checkpoints before and after ARMOR 

-- Not a Controlled Experiment! 

January 2009 

•January 3rd     Loaded 9/mm pistol 

•January 9th     16-handguns,  

                            4-rifles 

                            1-assault rifle;  

                            1000 rounds of ammo 

•January 10th     Two unloaded shotguns  

•January 12th     Loaded 22/cal rifle 

•January 17th     Loaded 9/mm pistol 

•January 22nd       Unloaded 9/mm pistol 
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Deployed Applications:  

ARMOR, IRIS, PROTECT, GUARDS 

 

 

 

 

 

Research challenges  

Efficient algorithms: Scale-up to real-world problems 

Observability: Adversary surveillance uncertainty 

Human adversary: Bounded rationality, observation power 

Uncertainty… 

 



Thank you! 
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