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0 Abstract

Let G = (V,E) be a strongly connected, aperiodic, directed graph having
outdegree 2 at each vertex. A red-blue coloring of G is a coloring of the
edges with the colors red and blue such that each vertex has one red edge
and one blue edge leaving it. Given such a coloring, we define R:V → V by
R(v) = w iff there is a red edge from v to w. Similarly we define B:V →
V . G is said to be collapsible if some composition of R’s and B’s maps
V to a single vertex. The road coloring problem is to determine whether
G has a collapsible coloring. It has been conjectured that all such G have
a collapsible coloring. Since G has outdegree 2 everywhere and is strongly
connected, the adjacency matrix, A, of G has a positive left eigenvector
w = (w(v1), . . . , w(vn)) with eigenvalue 2, i.e. wA = 2w. Furthermore, we
can assume that w’s components are integers with no common factor. We
call w(v) the weight of v. Let W ≡ ∑

v∈V w(v), defined to be the weight of
the graph. We will prove that if G has a simple cycle of length relatively
prime to W , then G is collapsibly colorable.

1 Introduction

Let G = (V,E) be a directed graph. G is said to be strongly connected if any
vertex can reach any other vertex by a path in G. G is said to be aperiodic
if V cannot be partitioned into d > 1 sets V1, . . . , Vd = V0 such that all edges
(u, v) with u ∈ Vi have v ∈ Vi+1.
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Let G have outdegree 2 at each vertex. A red-blue coloring of G is a
coloring of the edges with the colors red and blue such that each vertex has
one red edge and one blue edge leaving it. Given such a coloring, we define
R:V → V by R(v) = w iff there is a red edge from v to w. Similarly we
define B:V → V . G is said to be collapsible if some composition of R’s and
B’s maps V to a single vertex.

The road coloring problem is to determine whether G has a collapsible
coloring. It has been conjectured that all such G have a collapsible coloring
(i.e. G aperiodic, strongly connected). This problem originated in connection
with [2], and appears explicitly in [1]. There it was assumed that G has no
multiple edges, i.e. each vertex has edges to two distinct vertices. In [4] it was
shown that a graph which has no multiple edges and a simple cycle of prime
length is collapsibly colorable. In this paper we analyze a property of non-
collapsible colorings; this gives further conditions for collapsible colorability.

Since G has outdegree 2 everywhere and is strongly connected, the adja-
cency matrix, A, of G has a positive left eigenvector w = (w(v1), . . . , w(vn))
with eigenvalue 2, i.e. wA = 2w. Furthermore, we can assume that w’s com-
ponents are integers with no common factor. We call w(v) the weight of v.
Let W ≡ ∑v∈V w(v), defined to be the weight of the graph. For example, if
G has indegree 2 everywhere then W = |V |, the size of V . We will prove that
if G has a simple cycle of length relatively prime to W , then G is collapsibly
colorable.

I would like to thank Brian Marcus for posing this problem to me and for
encouragement on it.

2 An Observation

Let G be a graph as before and fix a coloring of G. For T ⊂ V , let w(T ),
the wight of T , be the sum of the weights of the vertices in T . We say that
T is collapsible if T can be mapped to a single vertex by some composition
of R’s and B’s. Let T0 be a collapsible set of maximum weight, w0.

Theorem 2.1 There exist i and subsets T1, . . . , Ti−1, each of which is col-
lapsible and of weight w0, such that T0, . . . , Ti−1 is a partition of V . In
particular, w0i = W .
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Proof Let U ⊂ V , and consider its backward images, R−1U , B−1U . Since
wA = 2w we have w(R−1U) + w(B−1U) = 2w(U). It follows that either
R−1U or B−1U has greater weight than U , or both have weight equal to that
of U . Also, if U is collapsible then so are R−1U and B−1U . From these
observations it follows that R−1 and B−1 of any collapsible set of maximum
weight is again collapsible of maximum weight.

We have f :T0 → v0, where f is a composition of R’s and B’s, and v0 ∈ V .
Suppose that T0 is not all of V . We claim that we can extend f backwards
to g = fh, h being a composition of R’s and B’s, so that g maps T0 to one
vertex and maps another maximum weight collapsible set to another vertex.
To see this, consider f−1, which maps V to subsets of V ; these subsets form
a partition of V . Pick any vertex v /∈ T0, and let g = fhf , where h is
any composition of R’s and B’s mapping v0 to v. Notice that f(v) 6= v0,
since v /∈ f−1v0 since T0 is maximal, and that f−1h−1T0 is a collapsible set of
maximum weight by the preceeding paragraph. It follows that g collapses two
disjoint maximum weight collapsible sets. If these two sets do not comprise
all of V , then we can extend g backwards to a function which collapses three
disjoint maximum weight collapsible sets, one of which is T0, by iterating the
same argument. Repeating this process enough times completes the proof of
the theorem.
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A set of vertices U is called a minimal image of V if U is the image of V
under some composition of R’s and B’s and if U cannot be reduced in size
by any further composition of R’s and B’s. It is easy to see that any such
U has size i — any set of size > i must contain at least two points in one of
T0, . . . , Ti−1 and can therefore be reduced, and set of size < i cannot be the
image of a set of vertices of weight > w0 times its cardinality, which is less
than W .

3 Coloring with Red Trees

Given that G has a simple cycle of length m through vertices v0, . . . vm−1,
we can choose one outgoing edge from each other vertex so that any path
through these edges leads to the cycle. Coloring these edges and the edges
of the cycle red we get a coloring of G which has a red cycle of length m and
a set of red paths taking each vertex into this cycle. We call such colorings
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of G colorings with red trees (the red edges of G form a tree plus an extra
edge to complete the cycle).

The following result appears in O’Brien’s paper —

Theorem 3.1 Let G have a coloring with a red tree and a red cycle of length
m. Then i, the size of a minimal image, divides m.

Proof See [4].
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Combining this with theorem 2.1 we have:

Corollary 3.2 If G is colored with a red tree and a red cycle of length m,
m relatively prime to W , then G is collapsible.

Proof Since i divides m and W , i = 1. That is to say G is collapsible.

Corollary 3.3 If W is a prime power, then G is collapsibly colorable.

Proof Since G is aperiodic, G has a cycle relatively prime to p where p is
the prime with W = pj . This cycle can be written as the union of simple
cycles, and at least one of the simple cycles must be relatively prime to p.
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In the case where G has indegree 2, has a prime number of vertices, and
has no multiple edges, it was previously known thatG is collapsibly colorable.
This was due to Nelson Markley and Michael Paul, unpublished, based on
ideas of G.A. Hedlund in [3].
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