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Abstract

Let G be a fixed graph with largest (adjacency matrix) eigenvalue
λ0 and with its universal cover having spectral radius ρ. We show
that a random cover of large degree over G has its “new” eigenvalues
bounded in absolute value by roughly

√
λ0ρ.

This gives a positive result about finite quotients of certain trees
having “small” eigenvalues, provided we ignore the “old” eigenvalues.
This positive result contrasts with the negative result of Lubotzky-
Nagnibeda that showed that there is a tree all of whose finite quotients
are not “Ramanujan” in the sense of Lubotzky-Philips-Sarnak and
Greenberg.

Our main result is a “relative version” of the Broder-Shamir bound
on eigenvalues of random regular graphs. Some of their combinatorial
techniques are replaced by spectral techniques on the universal cover
of G. For the choice of G that specializes our theorem to the Broder-
Shamir setting, our result slightly improves theirs.
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1 Introduction

The term Ramanujan has arisen in connection with the eigenvalues or spec-
trum of a graph, or more precisely the graph’s adjacency matrix1. In [Gre95],
a finite graph, X, is called Ramanujan if Spec(X) ⊂ [−ρ, ρ]∪{−λ0, λ0} where
ρ is the spectral radius of X’s universal cover (i.e. of the adjacency matrix
thereof), and λ0 is the Perron-Frobenius (or largest) eigenvalue of X. If X is
k-regular then this means that λ = ±k or |λ| ≤ 2

√
k − 1 for each eigenvalue,

λ, of X; this agrees with the definition in [LPS88].
Lubotzky and Nagnibeda (see [LN98]) have shown that there are trees,

T , with finite quotients where none of these quotients are Ramanujan in the
above sense. We shall soon explain why this negative result may be consid-
ered surprising. The main goal of this paper is to show that there is a positive
result for “most” finite quotients of a tree, provided that one weakens the no-
tion of being Ramanujan and provided that one considers a “relative” notion
of being weakly Ramanujan (we also conjecture that “weakly Ramanujan”
can be replaced by “Ramanujan”). To do so we “relativize” the Broder-
Shamir method for bounding the second eigenvalue (in [BS87]), generalizing
their result and slightly improving it in the original setting (and, to us, the
special setting) of regular graphs.

It is known that for certain k there are infinitely many k-regular graphs
that are Ramanujan (see [LPS88, Mar88, Mor94]). Furthermore, it is known
that “most” k-regular graphs2 with k even are “weakly Ramanujan” in the
following sense. Say that X is ν-weakly Ramanujan if Spec(X) ⊂ [−ν, ν] ∪
{−λ0, λ0} (also we usually insist that ν < λ0 to prevent a trivial situation).
Then building a k-regular graph from k/2 permutations (assuming that k
is even), a number of papers have shown that most graphs are ν-weakly
Ramanujan (see [BS87, FKS89, Fri91]) for certain values of ν; for example,
in [Fri91] it is shown that there is a constant C such that most k-regular
graphs on a sufficiently large number of vertices are ν-weakly Ramanujan
with ν = 2

√
k+ 2 log k+C. Furthermore, numerical experiments (like those

in [Fri93]) suggest that most random regular graphs on a large number of
vertices are Ramanujan.

1It arose because the proof that certain graphs’ eigenvalues (in [LPS88]) were small
relied upon known parts of the Ramanujan conjectures.

2Here “most” means in the sense of the random k-regular graph used by Broder and
Shamir, to be described later in this paper. This is not the same as the “uniform regular
graph” model, but the two models are contiguous (see [GJKW]).
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It therefore seems plausible to conjecture that most k-regular graphs are
Ramanujan, i.e. most finite quotients of the k-regular tree, T , are Ramanujan
(where the word “most” is given any “reasonable” interpretation). This
makes the negative result of Lubotzky and Nagnibeda surprising: the notion
of Ramanujan seems highly dependent on the tree.

For what follows, we recall the notion of a covering map. If G,H are
undirected graphs without multiple edges or self-loops, a morphism (i.e.,
graph homomorphism) π : H → G is called a covering map if for every vertex,
h, of H , π gives a bijection from the edges incident upon h with those incident
upon π(h). Also, G is called the base graph and H the covering graph. If
G is connected then the size of π−1 of a vertex or edge is constant, and is
called the degree of the covering map. We can also define “covering maps” for
graphs that are directed and/or have multiple edges and/or self-loops (see
section 5).

If AH , AG are the adjacency matrices of finite graphs H,G with a covering
map π : H → G, then any AG eigenfunction, f , pulls back to an eigenfunction
π∗f = f ◦ π of AH . Such an eigenfunction is called an old eigenfunction (for
π), and the resulting eigenvalue of AH from AG is an old eigenvalue. Since AG
is symmetric, the linear span of the old eigenfunctions is the space of functions
which are pullbacks, π∗f = f ◦ π, of an arbitrary f on G; this space is called
the space of old functions. Its orthogonal complement is called the space
of new functions, which are just those functions that sum to zero on each
“vertex fiber,” π−1(v), for all vertices, v, of G. A new eigenfunction/value is
an eigenfunction/value coming from a new function. Since AH is symmetric,
the new and old eigenpairs give a complete set of eigenpairs of AH .

The result of Lubotzky and Nagnibeda uses the fact that there are many
graphs, G, such that any finite quotient of G’s universal cover admits a
covering map to G. If such a G’s eigenvalues are outside [−ρ, ρ] ∪ {−λ0, λ0}
as above, none of T ’s finite quotients will be Ramanujan. In this paper we
show that in this situation the new eigenvalues, i.e., those not coming from
G, are weakly Ramanujan.

More generally, in this paper we study the following notion.

Definition 1.1 A covering map of graphs, π : H → G, is called ν-weakly
Ramanujan if the new spectrum of the cover lies in [−ν, ν], and is called
Ramanujan if we may take ν to be the spectral radius of the universal cover
of G.
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We shall prove a generalization of the Broder-Shamir result (the expected
eigenvalue result in [BS87]). For any graph, G = (V,E), we form a proba-
bility space of degree n covers of G, denoted Cn(G), as follows: our random
graph has vertex set Vn = V ×{1, . . . , n}, and for each e ∈ E we choose an ar-
bitrary orientation of e, (u, v), and choose uniformly a random permutation,
σe, on {1, . . . , n} (permutations of different edges are chosen independently);
we form edges from (u, i) to

(
v, σe(i)

)
for all i. This model of random cover

(sometimes “random lift”) has also been studied in [AL02, AL, ALM02, LR].

Theorem 1.2 Let G be a fixed graph, let λ0 denote the largest eigenvalue of
G, and let ρ denote the spectral radius of the universal cover of ρ. There is
a function α(n) such that α(n)→ 0 as n→∞ and positive constants C1, C2

such that the expected value,

ECn(G)

(∑
λ new

λt

)
≤ C2ν

t,

where
ν =

√
λ0ρ + α(n),

and 0 < t ≤ 2bC1 log nc. This theorem holds for G containing multiple edges
and self-loops, with Cn(G) replaced by any Broder-Shamir family of models
of a random cover of degree n (as in section 5).

In particular, the probability of a graph in Cn(G) being ν-weakly Ramanujan
with ν =

√
λ0ρ + α(n) goes to one as n→∞ for some function, α(n), with

α(n)→ 0 as n→∞.
A more precise form of Theorem 1.2 and some of its implications (in-

cluding a precise description of the α(n) above) are given in sections 2 and
5.

We claim that the above theorem gives a positive result as mentioned
earlier. Indeed, it is not hard to see that there are many trees, T (including
those occurring in [LN98]), such that for some graph, G, any finite quotient
of T occurs in Cn(G) for the appropriate n; for example, from [LN98] there
are graphs, G (without half-loops), such that every finite quotient of G’s
universal cover admits a covering map to G. It is easy to see that all covers
of G (without half-loops) occur in Cn(G), and that the probability of a cover,
H , of G = (V,E) of occurring is

(n!)|V |−|E|/|Aut(H/G)|,
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where Aut(H/G) is the group of automorphisms of H over G (see [Fri93]).
Cn(G) becomes a seemingly reasonable model of a probabilistic space of fi-
nite quotients of T of a given number of vertices. Our generalization of
the Broder-Shamir result says that most of the resulting covering maps are
weakly Ramanujan.

We remark that there are trees, T , that admit a finite quotient (and
therefore infinitely many finite quotients) such that there is no “minimal”
finite quotient, G, covered by all finite quotients. However, according to
[Fri93], there is a minimal pregraph (in the sense of [Fri93]) that is covered
by all finite quotients. It is therefore important to generalize the results of
this paper to pregraphs, e.g., to generalize Theorem 1.2 to allow G to be a
pregraph. This is the subject of a work of the author in progress.

If in Theorem 1.2 we take G to have one vertex with d/2 whole-loops (see
section 5), then we are in the setting of d-regular graphs generated by d/2
permutations as in [BS87]; however our result slightly improves upon that in
[BS87]. One key point in the Broder-Shamir trace method is to estimate the
number of closed walks from a given vertex on a tree of a given length; their
estimate (their Lemma 5) involves a weaker estimate of this number than
the estimate we use; we shall use the beautiful (and simple) estimate based
on the spectral radius of the tree, as done in [Buc86].

We mention that our strengthening of the Broder-Shamir result is inter-
esting for the following reason. The eignevalue estimates for random graphs
proven by the author and by Kahn-Szemerédi (in [FKS89, Fri91]) involve un-
determined constants; hence there is no known fixed value of the degree, k, for
which their estimates are non-trivial; it is only known that as k → ∞ their
results become interesting (and ultimately improve upon those of Broder and
Shamir). However, the original Broder-Shamir result yields (α(n)+21/2k3/4)-
weakly Ramanujan (for “most” graphs) where α(n) → 0 as n → ∞ (for k
even); this result is interesting for every even k > 4. So our strengthening of
the Broder-Shamir result gives new interesting bounds for random k-regular
graphs for small k and any particular fixed even value of k > 2. In our result
the 21/2k3/4 is improved to

√
2k(k − 1)1/4.

Another interesting note is that our version of Broder-Shamir gives the
first direct3results for the k-regular random graph model based on k perfect

3One can get “indirect” results on odd degree random graphs by starting with an even
degree random graph (with the Broder-Shamir model) and adding a perfect matching
(assuming an even number of vertices).
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matchings (when the degree of the cover is even). Thus we obtain the first
direct results for odd degree random graphs (by taking G to be one vertex
with half-loops; see section 5).

The rest of this paper is organized as follows. In sections 2 and 3 we prove
Theorem 1.2 in the case where the base graph, G, has no self-loops or multiple
edges; this gives us the essential ideas to prove Theorem 1.2 in any case. In
section 2 we also give a more precise form of Theorem 1.2 (Theorem 2.7)
and a number of interesting consequences. In section 4 we give a relative
version of the Alon-Boppana bound, which is a new eigenvalue lower bound
(for any graph cover) to complement the Broder-Shamir theorems of section
2; namely, we show that any cover of G of degree n has a new eigenvalue
as large as ρ − α(n) with α(n) → 0 as n → ∞. In section 5 we describe
some generalizations of the Broder-Shamir and Alon-Boppana theorems for
a general base graph, and give some directions for future work.

2 A Simple Case

Our main theorems are less awkward to prove when the base is a graph with
no self-loops or multiple edges. We shall first deal with this case, assuming the
model Cn(G) in the previous section; this case illustrates all the main ideas.
The more general situation follows the same ideas, and will be described in
section 5.

We wish to use the trace method to bound the eigenvalues of H , a random
element in Cn(G). This means we bound the expected value of the trace of
the adjacency matrix of H ; i.e., we bound the probability that a walk of a
given length from a given vertex results in a cycle.

Throughout this section, if e is oriented as (u, v) (for the purpose of
forming our random graph cover, H , in Cn(G) from the σe’s as in section 1),
we may write σu,v for σe and σv,u for σ−1

e .
So given a vertex in H , u0 = (v0, i0), a walk in H starting from u0 is

determined by its projection in G. The walk in H will be a cycle precisely
when the following two conditions hold: (1) the corresponding walk in G is
a cycle, v0, v1, . . . , vk = v0, and (2) we return to the original vertex over v0

in H , i.e.,
i0 = σvk−1,vk ◦ σvk−2,vk−1

◦ · · · ◦ σv0,v1(i0). (1)
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With the cycle v0, v1, . . . , vk = v0 we associate the cyclic word

w = σvk−1,vkσvk−2,vk−1
· · ·σv0,v1 ,

and write P (w) for the probability that equation (1) holds for a fixed i0
(clearly this probability is independent of i0).

More generally, by a word we mean a string

σvk−1,vkσvk−2,vk−1
· · ·σv0,v1 ,

where {vi, vi+1} is an edge in G for all i, and where vk need not equal v0.
If AH is the adjacency matrix of H , then clearly

E
(
Tr(AkH)

)
=
∑
w∈Wk

P (w)n,

where Wk is the collection of all cyclic words of length k in G. The problem
is reduced to estimating this sum involving the P (w)’s.

First we notice that σv,v′σv′,v is always the identity. Thus to evaluate P (w)
we may cancel all consecutive pairs of inverses in w, potentially reducing the
size of w. We call the new word obtained the reduction of w (which is easily
seen to be independent of the order in which the reductions are made). If
Irredm denotes the irreducible cyclical words of length m we have

∑
w∈Wk

P (w) =

k∑
m=0

∑
w∈Irredm

P (w)nk(w),

where nk(w) denotes the number of cyclical words of length k that reduce to
w. Of course, nk(w) = 0 if k and |w|, the length of w, have different parity.

Lemma 2.1 (Buck) Let e be the empty word. Then nk(e) ≤ |VG|ρk, where
ρ is the spectral radius of the adjacency matrix of the universal cover of G,
and VG is the set of vertices of G.

Proof We repeat the proof from [Buc86] (part of Proposition 3.1 there),
since we will use the same idea for bounding the number of other types of
walks. Let x be a vertex of the universal cover, T , of G, and let AT be
the adacency matrix of T . By spectral theory we know that the bounded
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operator AT is self-adjoint, and hence ‖AT‖ = ρ. Then if δx is the function
that is 1 on x and 0 on other vertices,

(δx, A
k
T δx) ≤ ‖AT‖k‖δx‖2 = ρk.

But the left-hand-side of the above equation corresponds to those walks on
x’s image in G whose corresponding cyclical word reduces to e. So applying
this to one x for each vertex in G yields the lemma.

2

Clearly P (e) = 1 when e is the empty word. Hence

∑
w∈Wk

P (w) ≤ n|VG|ρk +
k∑

m=1

∑
w∈Irredm

P (w)nk(w).

Next we relativize two of the key lemmas in the Broder-Shamir analysis.

Lemma 2.2 Let w be an irreducible cyclic word of length k > 0 that is not
of the form w = w−1

a wjbwa for any words wa, wb with wb 6= e and j ≥ 2. Then

P (w) ≤ 1

n− k +

(
k

2

)
k2

(n− k)2
.

Proof The proof is essentailly the same as in [BS87]. We explain this
approach in our context in section 3; the lemma is an immediate consequence
of Lemmas 3.1, 3.2, and 3.5.

2

Similarly, this next lemma is an immediate consequence of Lemmas 3.1,
3.2, and 3.6, and is essentailly the same as in [BS87].

Lemma 2.3 Let w be any irreducible cyclic word of length k. Then

P (w) ≤ k

n− k +

(
k

2

)
k2

(n− k)2
.

We now need another counting lemma, using spectral techniques as in
[Buc86].
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Lemma 2.4 The number of cyclic words of length k that reduce to a word
of the form w−1

a wjbwa with wb 6= e and j ≥ 2 is at most

|VG|k(k − 1)

(
k

2

)
ρk.

Proof If w = w−1
a wjbwa with wb 6= e and j ≥ 2, then there is a “cyclic shift,”

w̃, of w,
w̃ = σvt,vt+1σvt−1,vt · · ·σv0,v1σvk−1,vk · · ·σvt+1,vt+2,

such that w̃ reduces to wjb . Since there are k cyclic shifts of w, it suffices to
show that the number of words of length k reducing to one of the form wjb
with wb 6= e and j ≥ 2 is at most |VG|(k − 1)

(
k
2

)
ρk.

For any vertex v0 ∈ V , fix a vertex x of the universal cover, T , of G, lying
over v0. Each irreducible word wb begining with σv0,v1 for some vertex v1

corresponds uniquely to a vertex, y, of T . A word reduces to wjb with j ≥ 2
precisely when its corresponding walk starting at x (in T ) does the following:
(1) for some `1 > 0 its first `1’s σ’s reach y, thereby “tracing out” wb, (2) for
some `2 > 0 its next `2’s σ’s again trace wb, and (3) the rest of its σ’s trace
wib for some i ≥ 0. It follows that the number of such words is bounded by

k−2∑
i=0

∑
`1+`2≤k

(A`1G δx)(y)(A`2Gδx)(y)(Ak−`1−`2G δx)(y
i),

where yi is the vertex corresponding to wib, and where AG is the adjacency
matrix of G. Summing over all y 6= x yields a bound for the words with
reduction to wjb, j ≥ 2 and any wb 6= e. We now estimate as follows:

(Ak−`1−`2G δx)(y
i) ≤ ‖Ak−`1−`2G δx‖2 ≤ ρk−`1−`2‖δx‖2 = ρk−`1−`2 .

Hence∑
y 6=x

(A`1Gδx)(y)(A`2Gδx)(y)(Ak−`1−`2G δx)(y
i) ≤ ρk−`1−`2

∑
y 6=x

(A`1G δx)(y)(A`2Gδx)(y)

≤ ρk−`1−`2(A`1Gδx, A
`2
G δx) ≤ ρk−`1−`2ρ`1ρ`2 = ρk.

It follows that the total number of words of length k that reduce to one of
the form wjb with j ≥ 2 and wb beginning at a fixed vertex, v0, is at most

k−2∑
i=0

∑
`1+`2≤k

ρk = (k − 1)
∑

`1+`2≤k
ρk = (k − 1)

(
k

2

)
ρk,
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recalling that the `i are positive integers.
Hence the total number of words of length k that reduce to one of the

form wjb with j ≥ 2 with wb 6= e is at most

|VG|(k − 1)

(
k

2

)
ρk.

2

Combining all the above lemmas yields:

Lemma 2.5

E
(
Tr(AkH)

)
≤ |VG|ρkn+ |VG|k(k − 1)

(
k

2

)
ρk
(

kn

n− k +

(
k

2

)
k2n

(n− k)2

)
+Tr(AkG)

(
n

n− k +

(
k

2

)
k2n

(n− k)2

)
.

In particular, if k ≤ n/2 we have

E
(
Tr(AkH)

)
≤ |VG|ρk(n+ 2k8) + Tr(AkG) + |VG|λk04k4/n.

Proof There are Tr(AkG) cyclic walks of length k in G. Each walk either
(1) reduces to e, (2) reduces of w−1

a wjbwa with wb 6= e and j ≥ 2, or (3)
does neither (1) nor (2). In case (1) we have P (w) = 1, and in the other
cases we use one of the previous lemmas to bound P (w). The first statement
follows, and the second statement follows from the first, using the bound
Tr(AkG) ≤ |VG|λk0.

2

Finally we arrive at the essential eigenvalue estimate:

Theorem 2.6 If k ≤ n/2 then we have

E

(∑
λ new

λk

)
≤ |VG|ρk(n+ 2k8) + |VG|λk04k4/n. (2)

Proof We have

Tr(AkH) =

(∑
λ old

λk

)
+

(∑
λ new

λk

)
= Tr(AkG) +

(∑
λ new

λk

)
,

so the theorem follows from the preceding lemma.
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2

We apply this theorem with k = 2blogn/ log(λ0/ρ)c, assuming λ0 > ρ.
For this value of k there are positive constants c1, c2 for which

c1(λ0/ρ)k/2 ≤ n ≤ c2(λ0/ρ)k/2

(actually, one can take c2 = 1/c1 = λ0/ρ). The following theorem follows
almost at once.

Theorem 2.7 Let G be fixed. There is a C such that for any n, setting
k0 = 2blog n/ log(λ0/ρ)c, we have that for any k ≤ k0

ECn(G)(ρnew
k) ≤ (Ck0)4k/k0(λ0ρ)k/2. (3)

Proof The k = k0 case follows easily from the last theorem. That k can be
taken smaller follows from Jensen’s inequality.

2

We now state a number of consequences.

Corollary 2.8 For fixed G we have

ECn(G)(ρnew) ≤
√
λ0ρ +O(log logn/ log n).

Proof We take k = 1 in Theorem 2.7, whereupon there

(Ck0)4k/k0 ≤ eC
′ log(k0)/k0 ≤ 1 +

C ′′ log(k0)

k0
≤ 1 +

C ′′′ log logn

log n
.

Applying this to equation 3 yields the corollary.

2

Corollary 2.9 For any fixed G and B > 0 there are positive constants C1, C2

such that
ρnew ≥

√
λ0ρ

(
1 + α(n)

)
in Cn(G) with probability at most

C1(logn)4n−C2α(n)

whenever α(n) ≤ B.
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Proof If P is the aforementioned probability, then

ECn(G)(ρnew
k) ≥ P

(√
λ0ρ

(
1 + α(n)

))k
for any k. Now take k = k0 as in Theorem 2.7; equation 3 implies that

P
(
1 + α(n)

)k0 ≤ (Ck0)4.

Since k0 is proportional to logn, the corollary follows.

2

This corollary, in turn, has various corollaries depending on which func-
tion α(n) we choose. If we take α(n) to be constant, we conclude:

Theorem 2.10 For any fixed G and ε > 0 there are C, δ > 0 such that the
largest new eigenvalue is ≥ (1 + ε)

√
λ0ρ with probability ≤ Cn−δ.

We also conclude another theorem by taking α(n) = C log log n/ logn with
C sufficiently large:

Theorem 2.11 For a fixed G there is a C such that the probability that ρnew

is ≤
√
λ0ρ+ C log logn/ logn goes to 1 as n→∞.

3 The Broder-Shamir Approach

In this section we describe the remarkable and beautiful approach of Broder
and Shamir in [BS87] to analyze the P (w)’s of the previous section and to
prove Lemmas 2.2 and 2.3.

Fix a word, w, of length k (we may later insist that w be irreducible). To
study P (w), let

w = σvk−1,vkσvk−2,vk−1
· · ·σv0,v1 ,

and fix an i0 ∈ {1, . . . , n}. We shall determine where w takes (v0, i0) by de-
termining the steps of the walk in order, i.e., first determining i1 = σv0,v1(i0),
then i2 = σv1,v2(i1), etc. Initially we view all σu,v’s as “completely random” or
“completely undetermined,” each taking on any one of the n! permutations
on {1, . . . , n} with the same probability. Then we determine i1 = σv0,v1(i0) as
being chosen from {1, . . . , n}, each with probability 1/n. This determining
of i1 conditions the σu,v’s in that σv0,v1(i0) is fixed (as is σv1,v0(i1)) and σv0,v1
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now can only take on (n− 1)! possibly permutations. Assume that for some
s we have determined ij = σvj−1,vj (ij−1) for j = 1, . . . , s − 1, and now we
wish to determine is = σvs−1,vs(is−1). There are two possibilities: (1) a forced
choice, where σvs−1,vs(is−1) has already been determined (previously in the
walk), and (2) a free choice, where σvs−1,vs(is−1) has not been determined.
For a free choice, is takes on one of possibly n − t values from 1 to n with
equal probability, where t is the number of values of σvs−1,vs that have been
determined up to that point; clearly t ≤ s− 1.

For a free choice, we say that a coincidence has occurred if (vs, is) has been
previously visited in the walk; i.e., (vs, is) = (vj , ij) for some j < s (with j = 0
possible). A coincidence occurs with probability at most (s− 1)/(n− s+ 1).

We record the following two simple but important observation:

Lemma 3.1 Fix a word, w = σvk−1,vk · · ·σv0,v1, of length k, and a fixed i0.
The probability that the walk determined by w and i0 has two or more coin-
cidences is at most: (

k

2

)
k − 1

n− k + 1

k − 2

n− k + 2
.

Proof There are
(
k
2

)
ways of choosing two of the choices of i1, . . . , ik to

be both coincidences; the first coincidence occurs with probability ≤ (k −
1)/(n− k + 1), and the second ≤ (k − 2)/(n− k + 2).

2

Lemma 3.2 If w is irreducible, k > 0, and there are no coincidences, then
ik 6= i0. Moreover, (vs, is) 6= (vt, it) for any s 6= t.

Proof Assume, to the contrary, that there are s, t with 0 ≤ s < t ≤ k
with (vs, is) = (vt, it). Let s, t be as such, with t as small as possible. The
minimality of t implies that (vs, is) 6= (vr, ir) for any 0 ≤ s < r ≤ t− 1.

Since (vs, is) = (vt, it) and since it was not a coincidence, σvt−1,vt(it−1)
was already determined. But this can only happen in case for some j < t
we have either (1) (vt, it) = (vj, ij) and (vt−1, it−1) = (vj−1, ij−1), or (2)
(vt, it) = (vj−1, ij−1) and (vt−1, it−1) = (vj , ij). Case (1) is impossible, since
(vt−1, it−1) = (vj−1, ij−1) contradicts the minimality of t. Case (2) requires
j = t − 1 to avoid having (vt−1, it−1) = (vj, ij) contradict the minimality
of t; but then vt = vj−1 = vt−2, and w is reducible (since it contains the
subword σvt−1,vtσvt−2,vt−1 = σvt−1,vtσvt,vt−1 . Hence both cases (1) and (2) lead
to contradictions, and so we derive a contradiction by our assumption that
(vs, is) = (vt, it) for some s 6= t.
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2

Essentially the same proof yields the following stronger lemma:

Lemma 3.3 Let w be an irreducible cyclic word of length k, and assume
that ip (as above) is a free choice for some p between 1 and k. Let none of
ip, ip+1, . . . ik be a coincidence (i.e., each is either a forced choice or a free
choice that is not a coincidence). Then the vertices (vt, it) for t ≥ p will all
be distinct and will not coincide with any vertex (vr, ir) for r < p.

Proof We are claiming that (vs, is) 6= (vt, it) for any s < t and t ≥ p. If
not, again fix an s and t and with t minimal; clearly t > p since ip is a free
choice and not a coincidence. The same two case analysis as in the previous
proof yields a contradiction.

2

Lemma 3.4 Let w be an irreducible cylcic word such that ik = i0 in
which only one coincidence occurs. Then for some j ≥ 1 we may write
w = w−1

a wjbwa where (1) wbwa is irreducible, and (2) if |wa| = s and |wb| = t
then the coincidence occurs at it+s, the coincidence being (vt+s, it+s) = (vs, is).

Proof Clearly there is are unique s, t such that the coincidence is
(vt+s, it+s) = (vs, is). Let wa be the word from i0 to is and wb that from is+1

to is+t. After it+s, all other choices must be forced, in view of Lemma 3.3
and the facts that ik = i0 and there is exactly one coincidence occurring. At
is+t+1 we must either (1) begin to follow wb, or (2) begin to follow w−1

a . Since
w is irreducible, if we begin to follow wb we must traverse it in its entirety,
returning to (vs, is) again. Eventually we will follow w−1

a , whereupon the
irreducibility of w implies that we will end and reach (vk, ik) when we finish
traversing w−1

a . This implies the lemma.

2

Lemma 3.5 Let w be irreducible of length k > 0. Assume that w 6=
w−1
a wjbwa for any irreducible words wa, wb with j ≥ 2. Then the probabil-

ity that ik = i0 and exactly one coincidence occurs is at most

1

n− k + 1
.
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Proof Let wa be the longest irreducible subword of w such that w =
w−1
a wbwa (with wbwa irreducible). If |wa| = s then ik = i0 iff ik−s = is.

By Lemma 3.4, i1, . . . , ik−s−1 are free choices, and ik−s is a coincidence and
must take on the value is. This coincidence occurs with probability at most

1

n− k + s+ 1
≤ 1

n− k + 1
.

Similarly we have the following useful lemma:

Lemma 3.6 Let w be any irreducible word of length k > 0. Then the prob-
ability that ik = i0 and exactly one coincidence occurs is at most

k

n− k + 1
.

Proof wa be the longest irreducible subword of w such that w = w−1
a wcwa

(with wcwa irreducible). There are at most k positive integers, j, such that
wc = wjb . Lemma 3.4 shows that ik = i0 requires there to be such a j, and
for each j there is one specific coincidence (of the form is+t = is for a given
s and t) that must occur. For each j value the associated event occurs with
probability ≤ 1/(n− k + 1).

2

4 Alon-Boppana Bounds

Fix a graph, G, whose universal cover has spectral radius ρ. In this section
we explain that the largest new eigenvalue of a cover, H , of G of degree n
must be at least ρ − α(n), where α(n) is a function of n tending to 0 as
n→∞. The case of d-regular graphs, where G is a boquet of loops of total
degree d, was first claimed in [Alo86] (as due to Alon and Boppana), and
appears in [Nil91].

Theorem 4.1 Let G be a fixed graph. There exists a function α = α(n)
defined for n a positive integer such that (1) α(n) → 0 as n → ∞, and (2)
for any covering map π : H → G of degree n, there is a new eigenvalue of
absolute value at least ρ− α(n).
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In [Nil91], where G is a boquet of loops of total degree d, α(n) was shown
to be at most proportional to 1/ logn. In the independent works of Friedman
and Kahale (see [Fri93]), α(n) was shown to be at most proportional to
1/ log2 n. We will use a weaker technique to prove the above theorem, which
does not estimate α(n).
Proof We will make use of the following lemma that is a special case of part
of Proposition 3.1 of Buck in [Buc86].

Lemma 4.2 (Buck) Let G be a connected graph, and fix a vertex v ∈ VG.
Then for any ε > 0, there is an r0 such that the number of walks of length
2r from v to itself is at least (ρ− ε)2r, provided that r ≥ r0.

By Lemma 2.1, this number of walks is bounded above by ρ2r for all r > 0.
Now fix an ε > 0 and let r0 be as in the above lemma. Let G’s maximum

degree be D. Let

n0 = 1 +D +D(D − 1) +D(D − 1)2 + · · ·+D(D − 1)2r0 .

Then in any subset of > n0 vertices of a graph of maximum degree ≤ D,
there are two vertices of distance > 2r0.

Now consider a covering map π : H → G of degree n > n0; we can fix
u, v ∈ VH of distance > 2r0 such that π(u) = π(v). Let f = χu − χv be the
function that is 1 on u, −1 on v, and 0 elsewhere. Then (A2r0

H f, f) is the sum
of the number of walks of length 2r0 from, respectively u and v, that return
to their starting vertex. So

(A2r0
H f, f) ≥ 2(ρ− ε)2r0 .

But f is a new function of L2 norm
√

2, and so the norm of A2r0
H restricted

to the new functions is ≥ (ρ − ε)2r0 . Hence the largest eigenvalue of A2r0
H

restricted to L2
new is at least (ρ − ε)2r0 , and so that of AH is at least ρ − ε.

This proves the theorem.

2

5 Generalizations and Concluding Remarks

Up to now we have developed Broder-Shamir theorems (i.e. Theorem 2.7 and
its consequences) and Alon-Boppana theorems (Theorem 4.1) for only one
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model, Cn(G), of a random cover of G, and we have assumed that G has no
multiple edges or self-loops. It is easy to generalize the following theorems to
(1) graphs with multiple edges, (2) graphs with self-loops (either half-loops
or whole-loops in the terminology of [Fri93]), and (3) graphs with weighted
edges (where the adjacency matrix entries are sums of the appropriate edge
weights). Furthermore, define a C-Broder-Shamir permutation model to be a
probability space of permutation on n-elements for each n (or some collection
of n) such that for any n, k with k ≤ n/4 we have that if k values of the
permutation, σ, are fixed, any undetermined value, σ(i), of the permutation
has σ(i) = j with probability at most (1/n) + (Ck/n2) (for all j). Then the
Broder-Shamir theorems generalize to a random cover of G model given by
any independent permutations, {σe}e∈E, that are C-Broder-Shamir for some
C (independent of n). The details and examples can be found in [Fri].

We now give some directions for further work.
It would be nice to generalize the theorems here to allow the base graph

to be a “pregraph” (in the sense of [Fri93]). Then there would be a relative
Broder-Shamir theorem for quotients of every fixed tree, T .

Given a graph (or pregraph), G, with a “reasonable” (we remain vague
here) model of a random degree n cover ofG, one can conjecture that ρnew ≤ ρ
with probability tending to 1 (or even, less ambitiously, nonzero probability).
One could weaken this “Ramanujan” condition to having ρnew ≤ ρ + ω(n)
where ω is some suitable function of n. One could also ask similar question
about Galois covers (see [Fri93]). [LPS88] give examples of Galois covers
where the base graph has one or two vertices.

Another interesting direction would be to fix a cover π : G0 → G with
G0 infinite. Then one could ask about the above conjectures, as well as
the theorems in this paper, where we take a “random” finite quotient of G0

that covers G and take ρ to be the spectral radius of G0 (the Alon-Boppana
theorem easily generalizes to this situation).

We remark that there are some very interesting of covers with small new
spectral radius in certain cases. For example, it is not hard to see that the
Boolean n-cube4, Bn, has one degree two cover all of whose eigenvalues are
±
√
n (see [Fri94]).

4This is the graph with vertices {0, 1}n and edge between two vertices of Hamming
distance one, i.e. two vertices that differ in exactly one coordinate.
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