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Abstract

In this paper we study the Betti numbers of a type of simpli-
cial complex known as a chessboard complex. We obtain a formula
for their Betti numbers as a sum of terms involving partitions. This
formula allows us to determine which is the first nonvanishing Betti
number (aside from the 0-th Betti number). We can therefore settle
certain cases of a conjecture of Björner, Lovász, Vrećica, and Z̆ivaljević
in [BLVZ̆94]. Our formula also shows that all eigenvalues of the Lapla-
cians of the simplicial complexes are integers, and it gives a formula
(involving partitions) for the multiplicities of the eigenvalues.

1 Introduction

An admissible rook configuration on an m×n chessboard is a subset of squares
of the chessboard such that no two squares lie in the same row or column.
The collection of such configurations, C(m,n), is a simplicial complex (i.e.
it is closed under taking subsets). These simplicial complexes arise in vari-
ous settings (see [BLVZ̆94, Z̆V92, Gar79]), especially in some combinatorial
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geometry problems where understanding their connectivity1 was important.
In [BLVZ̆94] it is proven that for any m,n, C(m,n) is (ν − 2)-connected,
where ν = min(m,n, b(m + n + 1)/3c). It was conjectured that C(m,n) is
not (ν − 1)-connected.

It is the above conjecture and the observations in [Fri95] which moti-
vate this paper. In [Fri95] the above conjecture was verified in a few cases
by computer, and it was empirically discovered that the eigenvalues of the
Laplacians of the chessboard complexes are integers. In this paper we give
a proof of this fact, a formula for the multiplicity of each eigenvalue of the
Laplacian (including, therefore, a formula for each Betti number), and we
determine exactly which Betti numbers vanish. This verifies the conjecture
in [BLVZ̆94] in certain cases (including some new ones), and shows that in
the other cases if the conjecture holds it is due to torsion in the relevant
homology group. We explain this paragraph in detail below.

We claim that the connectivity conjecture in [BLVZ̆94] amounts to:

Conjecture 1.1 (Björner, Lovász, Vrećica, and Z̆ivaljević ) For any
positive m,n (except m = n = 1) we have Hν−1(X) 6= 0 (or 6= Z if ν = 1).
where X = C(m,n) and

ν = min(m,n, b(m+ n + 1)/3c).

Indeed, for ν ≤ 2 the connectivity conjecture was verified in [BLVZ̆94], and
our conjecture also hold by the calculations there2. Furthermore, for ν ≥ 3 we
already know that C(m,n) is (ν−2)-connected, and so C(m,n) is connected
and π1(C(m,n)) is trivial; by the Hurewicz Theorem (see [Spa66], chapter 7,
section 5) we have that C(m,n) is (ν − 2)-connected iff its homology groups
from the first up to the (ν − 2)-th are trivial.

In [BLVZ̆94] conjecture 1.1 was proven in a number of cases: (1) m ≤ n
with m ≤ 5, excepting C(4, 6), C(5, 7), C(5, 8), and (2) n ≥ 2m − 1. The
conjecture was verified via computer in [Fri95] for C(4, 6) and C(5, 8), and

1A topological space, X , is k-connected if for any 0 ≤ r ≤ k, any map from the r-
dimensional unit sphere to X can be extended to a map from the (r+ 1)-dimensional unit
ball to X ; equivalently, πi(X,x) are trivial for any x ∈ X and i = 0, . . . , r.

2Assuming m ≤ n, the ν = 1 case corresponds to either m = 1 (disjoint points) or
m = n = 2 (a single edge), and ν = 2 corresponds to either m = 2 < n (a complete graph
on more than two vertices) or m = 3 and n = 3, 4 for which the (ν − 1)-th Betti number
does not vanish (see [BLVZ̆94], section 2).
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was shown to hold for C(5, 7) unless a certain degeneracy holds in Laplacian
eigenvalues.

Fix m,n, let ν be as before, and let X = C(m,n). Let bi(X) denote the
i-th Betti number of X; it equals the rank of Hi(X). In this paper we shall
prove:

Theorem 1.2 br−1 > 0 iff (n− r)(m− r) ≤ r and n > r or m > r.

This theorem verifies the conjecture for C(4, 6), C(5, 7), C(5, 8) (without com-
puter aid). Moreover, this theorem easily shows that:

Theorem 1.3 For m ≤ n, we have bν−1(C(m,n)) > 0 iff n ≥ 2m − 4 or
(m,n) = (6, 6), (7, 7), (8, 9).

So for such values of m ≤ n the conjecture is verified. For other values of m ≤
n, bν−1(C(m,n)) = 0; so if Hν−1(C(m,n)) is non-trivial, it is due to torsion.
Note that when m = n = 5, indeed H2(C(5, 5)) = (Z/3Z) (see [BLVZ̆94]3),
so we can have a vanishing Betti number and nonvanishing homology group.
We have not been able to extend our analysis to the homology groups, and
to do so would be very important.

Our method is to study the combinatorial Laplacians of the C(m,n). The
dimension of the kernel of the i-th Laplacian on C(m,n) is just bi. It was
empirically observed in [Fri95] that these Laplacians seem to have integral
eigenvalues. We prove this observation, and give a formula for the multiplicity
of the eigenvalues in terms of certain partitions. This is theorem 3.9.

We mention an interesting special case of theorem 3.9. For n = m+1, the
m-th Laplacian on C(m,n) is just the Laplacian of the Cayley graph, G, on
Sn, the symmetric group on n elements, with generators (1, n), (2, n), . . . , (n−
1, n). It follows that its first nonzero Laplacian eigenvalue, λ1, of G is 1 (and
that it occurs with multiplicity (n−1)(n−2)). This result was first proven in
[FOW85], in a somewhat different fashion. This shows that G is, in a sense,
a much better expander than H , the Cayley graph on Sn with generators
(1, 2), (2, 3), . . . , (n − 1, n), which has λ1 = 2 − 2 cos(π/n) (see [Bac]). This
obervation has led to [Fri], where it is shown that among all Cayley graphs
on Sn with n− 1 generators which are transpositions, G has the largest λ1.

3In [BLVZ̆94] the homology appears as (Z/3Z)4, but Vic Reiner informed us that he
and Jack Eagon and Joel Roberts have noted this error, found the above to be correct,
and contacted the authors in [BLVZ̆94], who concur with them.
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We finish this section by outlining the rest of the paper. In section 2 we
review Hodge theory and introduce some notation. In section 3 we prove
theorem 3.9, the main theorem in this paper, which gives a formula for the
multiplicity of the eigenvalues of the Laplacians in terms of certain partitions
via the representation theory of the symmetric group. In section 4 we analyze
this formula to find the smallest eigenvalue of the Laplacians, thus determin-
ing when the Betti numbers vanish. In section 5 we determine precisely for
which m,n we have bν−1 6= 0.

2 Hodge Theory and the Laplacian

To compute the Betti numbers we will use the combinatorial Laplacians (see
[Hod41, Eck45, Dod76, DP76]). These Laplacians are most easily described
via Hodge theory of Hodge [Hod41].

Fix an abstract simplicial complex, X, i.e. a collection of sets closed under
taking subsets. By an i-face of X, we mean a subset of size i+1. Recall that
the Betti numbers, bi, are the dimensions of the rational homology groups,
Hi = ker(∂i)/im(∂i+1) of the chain complex,

· · · −→ Ci+1
∂i+1−→ Ci ∂i−→ Ci−1 −→ · · · −→ C−1 = 0, (1)

where Ci is the space of formal R-linear sums of oriented i-dimensional faces,
i.e. oriented subsets of the abstract simplicial complex of size i + 1, and ∂i
is the boundary map (see [Mun84]), given by

∂i(vj1 ∧ · · · ∧ vji+1
) =

i+1∑
k=1

(−1)k+1vj1 ∧ · · · ∧ vjk−1
∧ vjk+1

∧ · · · ∧ vji+1
.

Hodge theory works for an arbitrary chain complex over R (or any field of
characteristic 0, such as Q or C). Recall that a chain complex is a collection,
Ci, of vector spaces, with maps ∂i: Ci → Ci−1, as in equation 1, such that
∂i−1 ◦ ∂i = 0 for all i. Endowing each Ci with an inner product, we get maps
∂∗i : Ci−1 → Ci (i.e. the transpose of ∂i), and thus a Laplacian, ∆i: Ci → Ci,
for each i, defined by

∆i = ∂i+1∂
∗
i+1 + ∂∗i ∂i.

For each i we define the set of harmonic i-forms to be

Hi = {c ∈ Ci|∆ic = 0}.
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For chain complexes where each Ci is a finite dimensional R-vector space,
Hodge theory involves only elementary linear algebra, and says:

Proposition 2.1 (Hodge theory) For each i we have Hi
∼= Hi, in that

each member of Hi gives rise to a class in Hi, and each class in Hi contains
a unique harmonic form in Hi.

Proof Follows easily from the facts that (1) A = ∂∗i ∂i and B = ∂i+1∂
∗
i+1

are positive semi-definite and commute, satisfying AB = BA = 0, and (2)
imS = imS ◦ S∗ for any map of finite inner product spaces, S:V →W .

2

3 Laplacian Eigenvalues: A Formula

In this section we give a formula for the multiplicity of the eigenvalues of the
Laplacian on chessboard complexes.

Let [1..n] denote {1, 2, . . . , n}, and let [1..n](r) denote the set of tuples
I = (i1, . . . , ir) with i1, . . . , ir distinct integers in [1..n]. Let St denote the
symmetric group on t elements which we take to be [1..t], and let St1,...,tk =
St1 × · · · × Stk . Then Sn acts on [1..n] in the obvious way, (σ, i) 7→ σ(i), and

this gives rise to an Sn action on [1..n](r). Also Sr acts on [1..n](r) in the
obvious way, namely

τ(i1, . . . , ir) = (iτ(1), · · · , iτ(r)).

Let C[1..n](r) be the vector space of formal C-linear combinations of [1..n](r)

elements; it becomes an Sr,n-module.
Fix m,n. Let V = C{zi,j} with i ∈ [1..m] and j ∈ [1..n] be the vector

space of formal C-linear combinations of the zij’s. Clearly, for X = C(m,n)
we have

Cr−1 = Span
〈
zIJ = zi1j1 ∧ · · · ∧ zirjr | I ∈ [1..m](r), J ∈ [1..n](r)

〉
,

viewed as a subspace of
∧r V , and we have ∂r−1 is given by extending by

linearity the map:

∂r−1(zIJ) =
r∑

k=1

(−1)k+1zi1j1 ∧ · · · ∧ zik−1jk−1
∧ zik+1jk+1

∧ · · · ∧ zirjr .

5



We make V into an inner product space by making {zi,j} orthonormal; this
induces the inner product on

∧r V where {zIJ} are orthonormal. This deter-
mines

∂∗r (zIJ) =
∑

α/∈I, β /∈J
zαβ ∧ zIJ

and thereby determines the Laplacians.
The following proposition follows easily:

Proposition 3.1 For any r we have:

∆r−1 =
(
r + (n− r)(m− r)

)
I + Ar−1 +Br−1,

where I is the identity,

Ar−1(zIJ) =
r∑

k=1

∑
`/∈I

zi1j1 ∧ · · · ∧ z`jk ∧ · · · ∧ zirjr ,

and

Br−1(zIJ) =
r∑

k=1

∑
`/∈J

zi1j1 ∧ · · · ∧ zik` ∧ · · · ∧ zirjr .

So to understand ∆r−1 it sufficies to understand Kr−1 = Ar−1 +Br−1.
We now describe a method to determine the eigenvalues and eigenspaces

of Kr−1. Since Sr,n acts on the I ∈ [1..n](r), and since Sr,m acts on the

J ∈ [1..m](r), we have a natural Sr,n,r,m action on the zIJ ’s and therefore on
Cr−1. Note that Kr−1 commutes with this action; hence the eigenspaces we
seek decompose into Sr,n,r,m irreducibles, and we will be able to understand
them more easily this way.

First of all, it will be easier to study Kr−1 and Cr−1 by deriving them as
the antisymmetric parts of a tensor product of spaces. So set

Vr−1 = Span
〈
zIJ = zi1j1 ⊗ · · · ⊗ zirjr | I ∈ [1..m](r), J ∈ [1..n](r)

〉
,

viewed as a subspace of V ⊗r. Let Kr−1 = Ar−1 + Br−1 act on Vr−1 via

Ar−1(zIJ) =
r∑

k=1

∑
`/∈I

zi1j1 ⊗ · · · ⊗ z`jk ⊗ · · · ⊗ zirjr ,
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and

Br−1(zIJ) =
r∑

k=1

∑
`/∈J

zi1j1 ⊗ · · · ⊗ zik` ⊗ · · · ⊗ zirjr .

The natural Sr,n,r,m action on the zIJ ’s gives one on Vr−1.
Embedding Sr diagonally into Sr,r gives the Sr action on Vr−1 which

just permutes tensors. Cr−1 can be viewed as the subspace of Vr−1 of skew
symmetric tensors, and clearly:

Proposition 3.2 The map π:Vr−1 → Vr−1 given by

π =
1

r!

∑
σ∈Sr

sgn(σ)σ (2)

is a projection onto Cr−1. We have that π commutes with Ar−1 and Br−1,
and Ar−1,Br−1 restricted to Cr−1 are just Ar−1, Br−1.

Now we seek to understand Kr−1 acting on Vr−1. We start by observing
that:

Vr−1
∼= C[1..n](r) ⊗C[1..m](r)

as Sr,n,r,m modules.
Next we explain how Kr−1 can be understood in terms of a certain con-

jugacy class sum. For an integer p we define Tp to be the element of CSp

Tp =
∑

1≤i<j≤p
(i, j).

It acts as a scalar multiplication by an integer on each irreducible of Sp, and
the particular integer can be easily determined from the partition indexing
the irreducible. On CSr,n ∼= CSr ⊗CSn we define the difference:

Dr,n = 1⊗ Tn − Tr ⊗ 1−
(
n− r

2

)
1⊗ 1

Clearly the element Dr,n ⊗ 1 ∈ CSr,n ⊗ CSr,m = CSr,n,r,m gives the same
action on Vr−1 as does Ar−1. Similarly 1 ⊗ Dr,m, interpreted accordingly,
equals Br−1. Since Tp’s actions on Sp irreducibles is, in a sense, understood,
we will get a similar understanding of Kr−1’s action on Vr−1 (and of Kr−1’s
on Cr−1) as soon as we decompose Vr−1 into Sr,n,r,m irreducibles.

We begin this decomposition by the following:
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Theorem 3.3 As an Sr,n module we have that C[1..n](r) decomposes as:

C[1..n](r) ∼=
⊕

λ`n, (n−r)⊆λ
Sλ/(n−r) ⊗ Sλ

We first explain this theorem. By λ ` n we mean that λ is a partition of
n. To each such partition, λ, there is an naturally associated irreducible
representation Sλ of Sn. Partitions have a natural partial order4 ⊆. By
(n − r) we mean the one element partition of n − r. For α ⊆ β there is
natural “skew representation,” Sβ/α, having the property that for each γ the
multiplicity of Sγ in Sβ/α is the Littlewood-Richardson coefficient cβγ,α; see
[JK81, Mac95].
Proof First we notice that as Sr,n-modules,

C[1..n](r) ∼= ε⊗CSn−r CSn,

where ε is the trivial representation of Sn−r, and where the right-hand-side
is viewed as an Sr,n-module as in [Han]. The theorem then follows from
proposition 4.9 of [Han].

2

To finish our analysis it suffices to understand the action of Tp on Sp ir-
reducibles, to understand the Littlewood-Richardson coefficients in our case,
and to combine the results. To this end we have the standard results. From
[Dia88] pages 36 and fact 2 on page 40 (and see [Mac95] page 118) we have

Lemma 3.4 If λ ` p, then Tp acts on Sλ as a constant, Cλ, times the
identity, where Cλ =

∑
x∈λ cx, the sum being over the squares, x, in the

Ferrers diagram of λ, and where cx is the “content” of x, i.e. its horizontal
coordinate minus its vertical coordinate.

Definition 3.5 Let α and β be partitions with α contained in β. We say
that β/α is a horizontal strip if β can be obtained from α by adding at most
one square in each column.

4There are many partial orders on partitions. The partial order α ⊆ β used here means
that the Ferrers diagram of α fits into that of β; i.e. if α = (α1, . . .) and β = (β1, . . .),
then αi ≤ βi for all i.
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Note that in this definition we have identified a partition with its Ferrers
diagram. We will continue to do so throughout this article.

From [Mac95] page 143 we have:

Lemma 3.6 cλα,(n−r) is 1 or 0 according to whether or not λ/α is a horizontal
strip.

We now make some simple conclusions:

Corollary 3.7 As an Sr,n,r,m-module, Vr−1 splits as a direct sum of Sα,λ,β,µ,
where

1. Sα,λ,β,µ = Sα ⊗ Sλ ⊗ Sβ ⊗ Sµ,

2. the sum is over all α, β ` r, λ ` n, and µ ` m, such that cλα,(n−r) =
cµβ,(m−r) = 1, i.e. such that λ/α and µ/β are horizontal strips,

3. since the splitting is as Sr,n,r,m-modules, the actions of π and Kr−1

factor through each direct summand, and

4. Kr−1 acts as the identity times

Cλ + Cµ − Cα − Cβ −
(
n− r

2

)
−
(
m− r

2

)

on the summand Sα,λ,β,µ (if present).

Now consider π, as in equation 2, as an element of CSr,r. We have:

Lemma 3.8 The image of π (π viewed as an element of CSr,r) on Sα ⊗ Sβ
for α, β ` r is {0} unless α = β ′, i.e. α and β are conjugate partitions, in
which case the image is one dimensional.

Proof The alternating representation, S1r , can be viewed as a (one dimen-
sional) Sr-submodule, A, of CSr. π, viewed as an element of CSr, clearly
acts as projection onto A. It follows that for λ ` r we have π is the identity
or 0 according to whether or not λ = 1r (the partition (1, 1, . . . , 1)). So the
action of π on Sα ⊗ Sβ (viewed as an Sr-module) depends on how many
copies of S1r lie inside of it (viewed as an Sr-module). Since Sβ

′
= Sβ ⊗S1r ,

this number of copies is the same as the number of copies of the trivial repre-
sentation inside of Sα ⊗ Sβ′. Since all characters of Sr are real (see [JK81]),
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we have Sβ
′ ' (Sβ

′
)∗, and so Sα ⊗ Sβ′ ' Hom(Sα, Sβ

′
) as representations,

where g ∈ Sr acts on f ∈ Hom by taking it to the map u 7→ gf(g−1u). So
the Sr invariants of the above Hom are just those elements of Hom which are
intertwining maps. By Schur’s Lemma the dimension of such maps is 1 or 0
depending on whether or not α = β ′.

2

This lemma simplifies things, for clearly Cα = −Cβ for α = β ′.
We recall that fλ = dim(Sλ) is a positive integer; it can be computed via

the hook length formula (see [Mac95]).
We summarize our finding as follows:

Theorem 3.9 The eigenvalues of ∆r−1 on Cr−1 are as follows: for every
α ` r, λ ` n, and µ ` m such that λ/α and µ/α′ are horizontal strips, we
have an fλfµ-dimensional eigenspace of eigenvalue(

r + (n− r)(m− r)−
(
n− r

2

)
−
(
m− r

2

))
+ Cλ + Cµ.

Corollary 3.10 All the eigenvalues of ∆r−1 on C(m,n) are integers.

4 The Betti Numbers

Now we apply theorem 3.9 to find out which Betti numbers vanish. Although
the formula in theorem 3.9 is not quite explicit, it allows us to easily enough
tell whether or not a 0 eigenvalue in ∆r−1 occurs.

Theorem 4.1 For X = C(m,n) we have br−1 = 0 iff (m− r)(n− r) > r.

More generally, we can give a fairly simple formula for the multiplicity of
the smallest eigenvalue of ∆r−1, and the above theorem is a corollary. Our
formula involves the following notion:

Definition 4.2 For α ` r and integer n ≥ r, the minimally horizontally
built partition of size n from α is the partition obtained by adding one square
to α in each of the first n− r columns. We denote it α[n].
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Note that of all horizontal strips β/α with α fixed and β ` n, clearly β = α[n]
has the minimum content.

Definition 4.3 Given non-negative integers a, b, we say that α is a, b-
subrectangular if α is contained in the a × b rectangle. We say that α is
a, b-super-rectangular if it contains the a× b rectangle and if no square of α
lies past the a-th column and the b-th row simultaneously. By Ra,b and Sa,b we
denote respectively the a, b-subrectangular and super-rectangular partitions.

We remark that S0,0 is empty and that if a > 0 or b > 0 (or both) then
Sa,b contains one partition of size n for any n > 0.

Our main theorem is:

Theorem 4.4 For (m− r)(n− r) ≤ r we have

br−1 =
∑

α`r, α∈Sn−r,m−r
fα[n]fα

′[m];

in this case br−1 > 0 unless m = n = r (in which case Sn−r,m−r is empty and
it is easily checked that ∆r−1 is r times the identity). For (m− r)(n− r) > r
the smallest eigenvalue of ∆r−1 is (m−r)(n−r)−r (in particular br−1 = 0),
and its multiplicity is given by:∑

α`r, α∈Rn−r,m−r
fα[n]fα

′[m].

Proof Fix α ` r, and let λ = α[n]. As mentioned before, clearly λ is
the partition of least content such that λ/α is a horizontal strip and λ ` n.
Consider the “excess content” of λ with respect to α, i.e. the sum of the cx
with x ranging over the λ− α squares (which equals Cλ − Cα). Clearly the
excess content is (

n− r
2

)
− r

if n − r ≥ col(α), where col(α) is the number of nonempty columns of α.
Furthermore, when n− r < col(α), we have that the excess content is(

n− r
2

)
− r + E
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where E is the number of squares of α in its last col(α)− (n− r) columns.
Doing the same for α′ and µ = α′[m], we get an excess content of(

m− r
2

)
− r + F,

where F is the number of squares of α in its last row(α)− (m − r) rows (if
this number is positive, and otherwise F = 0). Since Cα + Cα′ = 0, we have
that

Cλ + Cν =

(
n− r

2

)
+

(
m− r

2

)
− 2r + E + F.

It follows that the smallest eigenvalue of ∆r−1 to which α contributes as in
the formula in theorem 3.9 is

(n− r)(m− r)− r + E + F. (3)

It follows that α contributes multiplicity fα[n]fα
′[m] to the eigenvalue 0 iff

r = (n−r)(m−r)+E+F , which will be the case iff r ≥ (n−r)(m−r) and α
is (n−r), (m−r)-super-rectangular. Hence the formula for r ≥ (n−r)(m−r),
the case m = n = r being special in that Sn−r,m−r is the empty set— in this
case we easily check that ∆r−1 is r times the identity. For r < (n−r)(m−r),
the minimum value of the expression in equation 3 is (n − r)(m − r) − r,
and is achieved iff E = F = 0, i.e. for those α’s which are (n− r), (m− r)-
subrectangular.

2

5 The Conjecture of Björner, Lovász,
Vrećica, and Z̆ivaljević

Now we draw some conclusions about the Björner, Lovász, Vrećica, and
Z̆ivaljević conjecture based on the formula in the last section. Recall, br−1 > 0
iff (m−r)(n−r) ≤ r. So we can verify the conjecture when ν ≥ (m−ν)(n−ν).
We may assume m ≤ n. When 2m − 1 ≤ n we have ν = m and, of course
ν ≥ (m − ν)(n − ν) (also the conjecture was verified in [BLVZ̆94] in this
case).
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For 2m − 1 > n we have ν = b(m + n + 1)/3c. So let n = 2m − 1 − c,
assuming c ≥ 1. We have ν = m−dc/3e. If c = 1, 2, 3 we have ν = m−1 and
(m− ν)(n− ν) = m− c so that ν ≥ (m− ν)(n− ν). We shall show that for
c ≥ 4 there are only finitely many values of n,m for which ν ≥ (m−ν)(n−ν)
holds.

For c ≥ 0 the condition ν ≥ (m− ν)(n− ν) amounts to

m− dc/3e ≥ dc/3e(m + dc/3e − 1− c),

which for c ≥ 4 is to say

m ≤ dc/3e(c− dc/3e)dc/3e − 1
;

the condition m ≤ n amounts to m ≥ c + 1. Hence for c ≥ 4 the two
conditions amount to:

c+ 1 ≤ m ≤ dc/3e(c− dc/3e)dc/3e − 1
.

The cases c = 4, 5, 6 therefore give three (m,n) pairs, namely
(6, 6), (7, 7), (8, 9). For c ≥ 7 we have dc/3e ≥ 3, and so

dc/3e(dc/3e+ 1) ≥ 3(dc/3e+ 1) > c+ 1.

Hence
dc/3e − (c+ 1) > −dc/3e2,

and adding dc/3ec to both sides yields:

(c+ 1)(dc/3e − 1) > dc/3e(c− dc/3e)

and so

c + 1 >
dc/3e(c− dc/3e)
dc/3e − 1

.

Hence for c ≥ 7 there are no possible values of m.
We summarize our findings:

Theorem 5.1 For m ≤ n and 2m − 4 ≤ n we have bν−1(X) > 0 where
X = C(m,n) and ν = min(m,n, b(m + n + 1)/3c). The same holds for
(m,n) = (6, 6), (7, 7), (8, 9). In all other cases we have bν−1(X) = 0.
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