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Abstract

Given a connected graph, X, we denote by λ2 = λ2(X) its smallest non-zero
Laplacian eigenvalue.

In this paper we show that among all sets of n − 1 transpositions which
generate the symmetric group, Sn, the set whose associated Cayley graph has
the highest λ2 is the set {(1, n), (2, n), . . . , (n− 1, n)} (or the same with n and i
exchanged for any i < n). For this set we have λ2 = 1.

This result follows easily from the following result. For any set of trans-
positions, T , we can form a graph on n vertices, GP , by forming an edge
{i, j} in GP for each transposition (i, j) ∈ T . We prove that if GP is bi-
partite, then λ2 of the Cayley graph associated to T is at most λ2(GP ); left
open is the compelling conjecture that the two λ2’s are always equal. We dis-
cuss this and other generalizations of Bacher’s work, which dealt with the case
T = {(1, 2), (2, 3), . . . , (n− 1, n)}.

1 Introduction

Let X = (V,E) be a finite graph on n = |V | vertices, possibly with self-loops and
multiple edges. The Laplacian associated with X is the n × n matrix ∆ = D −
A, where A is the usual adjacency matrix and D is the diagonal matrix whose i, i
entry is di, the degree of i. We have that ∆ is symmetric and positive-semidefinite,
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and has real eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn; λ2 = λ2(X) is non-zero iff X
is connected. λ2 upper and lower bounds certain expansion coefficients in X (see
[Tan84, AM85, Dod84, Alo86, Lub94]), and so λ2 can be viewed as a measure of
expansion.

By Spec(X) we mean the multiset of eigenvalues of ∆ = ∆(X). We will sometimes
denote λn by λmax. By a function on X or V we mean a real-valued function on V ; by
an eigenfunction we mean one with respect to ∆. If X is a graph, V (X) denotes X’s
vertex set.

If G is a group and T a subset of G, the Cayley graph of G with respect to T is
the directed graph X(G, T ) with vertex set G and an edge (g, gt) for each g ∈ G and
t ∈ T . If T is closed under taking inverses (i.e. for all T we have t ∈ T iff t−1 ∈ T ),
then X(G, T ) can be viewed as a graph (i.e. an undirected graph).

If X is d-regular, i.e. dv = d for all v, then A’s eigenvalues are precisely d minus
∆’s eigenvalues. Thus the study of the spectrum of the adjacency matrix is essentially
the same as that of the Laplacian for regular graphs. This holds for Cayley graphs,
since they are d-regular for d = |T |.

Let Sn be the symmetric group on n elements, which we take to be {1, . . . , n}.
In this article we study λ2 of certain Cayley graphs on Sn, especially those generated
by a minimal number of transpositions. In [Bac94], Bacher shows that the Cayley
graph on Sn with respect to the generators T1 = {(1, 2), (2, 3), . . . , (n − 1, n)} has
λ2 = 2 − 2 cos(π/n). In [FOW85, FH98, FH99], it was observed that with respect to
the generators T2 = {(1, n), (2, n), . . . , (n − 1, n)} we have λ2 = 1. So in a sense the
Cayley graph with respect to T2 is a much better expander than that with respect to
T1. One of the main goals of this paper is to prove that with respect to a set of n− 1
transpositions, the highest λ2 which can be achieved is 1.

Theorem 1.1 Let T be a set of n−1 transpositions from Sn. Then the Cayley graph on
Sn with respect to T has λ2 ≤ 1, with equality iff for some i we have T = {(i, j)|j 6= i}.

Theorem 1.1 is an easy consequence of the following interesting fact. To any set, T ,
of transpositions on Sn, we associate a primitive graph, GP , with vertex set {1, . . . , n}
and with an edge {i, j} for each (i, j) ∈ T .

Theorem 1.2 Let T be a set of transpositions in Sn whose primitive graph, GP , is
bipartite. Then λ2(GP ) occurs as an eigenvalue in X(Sn, T ) with multiplicity at least
n− 1 times its multiplicity in GP .

The above proposition is a more or less straightforward consequence of the methods
of Bacher in [Bac94], where he proved the above for T = (1, 2), (2, 3), . . . , (n− 1, n).

The multiplicity statement in theorem 1.2 follows from standard representation
theory (see [Dia88]). Namely, the eigenvalues of a Cayley graph X(G, T ) (for any G
and T ) are those of the natural matrix associated with T acting on each irreducible;
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each eigenvalue of an irreducible gives rise to f eigenvalues in X, where f is the
dimension of the irreducible. One irreducible representation on Sn is the standard
representation (see [Ser82]), which can be viewed as the functions on {1, . . . , n} whose
sum of values is zero (with Sn acting in the obvious way). It follows that the eigenvalues
of X = X(Sn, T ) corresponding to this representation are just λ2, . . . , λn of GP . Hence
each λi(GP ), i ≥ 2, contributes an n−1 multiplicity of the same eigenvalue in X(Sn, T ).
(It also follows, by taking the k-th exterior power of the standard representation, that

each sum of k distinct eigenvalues, λi(GP ), with i ≥ 2, contributes an
(
n−1
k

)
multiplicity

of the same eigenvalue in X.) The same remark holds for any Cayley graph on Sn,
with GP replaced by X[1], where X[1] is defined below in section 2.

Theorem 1.1 follows from theorem 1.2 from the well known fact that λ2 ≤ 1 for
any tree, with equality iff the tree has n − 1 leaves and one interior vertex of degree
n− 1 (see [Moh91]).

Theorem 1.2 leads to the following fascinating conjecture:

Conjecture 1.3 λ2(X(Sn, T )) = λ2(GP ) whenever T is a set of transpositions with
GP bipartite.

As mentioned before, we know the above conjecture holds for T being T1 or T2 as
above. It is also valid when GP is the complete graph (see [DS81]), and a natural
generalization of this conclusion is known to hold also when T is any conjugacy class
in Sn (see [Roi96]).

The question of the exact multiplicity of λ2 in X(Sn, T ) is interesting. For T = T2

as before, its multiplicity is exactly (n− 1)(n− 2) (see [FOW85, FH98, FH99]), which
is n − 1 times its multiplicity in GP . In theorem 1.2 we do not generally know when
equality holds. When it doesn’t, it means there are some extra representations with
the same eigenvalues; it would be interesting to know if this can happen.

The rest of this paper is organized as follows. In section 2 we recall the notion
of a Schreier graph, and discuss a natural sequence of Schreier graphs needed here.
In section 3 we outline the proof of theorem 1.2. In section 4 we discuss the pseudo-
bipartiteness of the sequence of Schreier graphs; this shows a limitation of Bacher’s
method to the case where GP is bipartite. We also discuss some facts about eigenvalues
in section 4. The rest of the details of the proof of theorem 1.2 are in section 5.
In section 6 we close with some remarks on future directions, and prove that the
representation theory eigenfunctions are the same as those constructed in sections 3–5.
In appendix A we make some technical and bibliographical remarks on the notion of
X[k] of section 2.

The author wishes to thank Jean-Pierre Tillich, Yuval Roichman, and Nick Pip-
penger for helpful discussions.
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2 Some Schreier Graphs

Recall that for a subgroup H of a group G with T a subset of G, the Schreier graph on
H\G with respect to T is the graph X = X(G,H, T ) with vertex set being the right
cosets H\G = {Hg|g ∈ G} and edges (Hg,Hgt) for each coset Hg and each t ∈ T . If
T is closed under taking inverses then X can be viewed as a graph. Note that if 1 is
the identity in G, we have X(G, {1}, T ) = X(G, T ), so the notion of a Schreier graph
generalizes that of a Cayley graph. If H ⊂ K are subgroups of G, then the natural
map H\G→ K\G gives rise to a map X(G,H, T )→ X(G,K, T ) which is a covering
map (see [Fri93]); in particular, the eigenvalues of X(G,K, T ) are a subset of those of
X(G,H, T ).

Notice that Schreier graphs are regular, and so studying their Laplacian spectrum
is equivalent to studying thier adjacency matrix spectrum.

Let T be a subset of Sn. The inclusion of {1, . . . , n − k} into {1, . . . , n} for
k > 0 gives rise to an inclusion Sn−k ⊂ Sn, giving rise to a Schreier graph X[k] =
X(Sn, Sn−k, T ). The inclusion Sn−m−1 ⊂ Sn−m for m = 0, . . . , n− 1 yields a sequence
of covering maps:

X[n]→ X[n− 1]→ · · · → X[1]→ X[0]. (2.1)

(Here we take S0 to be the one element group, so X[n] = X[n − 1] = X(Sn, T );
also X[0] has one vertex.) Note (see [Bac94]) that X[k] can be viewed as the graph
(V [k], E[k]), whose vertices are sequences I = (i1, . . . , ik) of length k of distinct integers
of {1, . . . , n}, with an edge (I, t(I)) ∈ E for each t ∈ T and each I ∈ V , where

t(I) = (t(i1), . . . , t(ik)); actually Sn−k embeds naturally into Sn in
(
n
k

)
different ways,

by acting on a subset of size n− k of {1, . . . , n}, and each embedding gives rise to an
isomorphic X[k]; in fact, the I ∈ V [k] simply represent the image with respect to a
(an Sn−k\Sn) coset element of the k elements of {1, . . . , n} which are not acted upon
by Sn−k. It follows that the mapping X[m]→ X[m−1] on the vertices is just deletion
of the first element.

For later use we mention that Sk acts on V [k] in the obvious way, and this action
gives rise to one on V [k] functions which commutes with ∆.

3 The Proof of Theorem 1.2

In this section we outline the proof of theorem 1.2 and describe how the technique might
generalize further. The details and proofs of certain lemmas are given in sections 4
and 5.

For theorem 1.2 we follow Bacher’s approach. Let T be, for the time being, an
arbitrary collection of transpositions in Sn and let X[k] be as before. The first lemma
is interesting but not hard:

Lemma 3.1 λ2(X[n]) = 2|T | − λmax(X[n− 2]).
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It would be interesting to know what is the appropriate generalization for different T .
We discuss possible generalizations and a proof of this lemma in section 4.

We will describe a natural candidate λmax(X[n− 2]), or more generally λmax(X[k])
for arbitrary k. Recall that Sk acts on V [k], and its resulting action on V [k] functions
commutes with ∆.

Definition 3.2 A function u on V [k] is antisymmetric if for any s ∈ Sk and I ∈ V [k]
we have u(s(I)) = sign(s)u(I). We denote the space of such functions by A[k].

Since ∆ commutes with the Sk action, ∆ leaves A[k] invariant. The dimension of A[k]

is clearly
(
n
k

)
, and so there are

(
n
k

)
independent eigenfuntions in A[k]. The remarkable

fact is that we can exhibit all the
(
n
k

)
antisymmetric eigenfunctions and eigenvalues.

Theorem 3.3 The eigenvalues of ∆ in A[k] are precisely{∑
i∈I

λi

∣∣∣∣ I ⊂ {1, . . . , n}, |I| = k

}
,

where {λ1, · · · , λn} = Spec(GP ) and GP is the primitive graph of T .

We shall outline the proof of this theorem at the end of this section.
So the largest A[n− 2] eigenvalue is ν = λ3 + · · ·+ λn, and taking the trace of ∆

shows that ν = 2|T | − λ2. If ν is the largest X[n− 2] eigenvalue, then

λ2(X[n]) = 2|T | − λmax(X[n− 2]) = 2|T | − ν = λ2(GP ).

Conversely if ν is not the largest X[n− 2] eigenvalue, then λ2(X[n]) < λ2(GP ).
We remark that Bacher essentially showed that ν is the largest X[n−2] eigenvalue

when X[n− 2] is “pseudo-bipartite,” in the sense below.

Definition 3.4 We say that a graph, X, is pseudo-bipartite if X is bipartite when all
self-loops are removed. A bipartition of pseudo-bipartite graph, X = (V,E), is a map
sign:V → {±1} such that sign(u), sign(v) differ whenever u 6= v and {u, v} ∈ E.

Unfortunately X[n−2] is pseudo-bipartite only when T is T1 as in the introduction.
Still, as remarked above, ν = λ3+· · ·+λn is an eigenvalue ofX[n−2], and so theorem 1.2
follows. It remains to discuss the proof of theorem 3.3 in more detail.

There is a standard notion of the (Cartesian) product of graphs (see section 5),
giving rise to a notion of a power, Xr, for any graph X = (V,E) and integer r ≥ 1.
We define another notion of antisymmetric, for functions on Xr. A σ ∈ Sr acts on
V (Xr) = V r by permuting indices, i.e.

σ(v1, . . . , vr) = (vσ(1), . . . , vσ(r)).
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Definition 3.5 A function u on Xr is antisymmetric if u(σ(v)) = sign(σ)u(v) for all
v ∈ V (Xr) and σ ∈ Sr.

Again, it is easy to find the dimension of the antisymmetric functions; it is
(
n
r

)
where

n = |V (X)|. And again, ∆ of Xr commutes with the Sr action on functions, and hence
leaves the antisymmetric functions invariant. It is easy to compute the antisymmetric
part of the spectrum:

Lemma 3.6 The eigenvalues corresponding to antisymmetric eigenvalues of ∆ on Xr

are precisely: {∑
i∈I

λi

∣∣∣∣ I ⊂ {1, . . . , n}, |I| = r

}

where {λ1, · · · , λn} = Spec(X).

Proof See section 5.
The crux of Bacher’s method is the following remarkable observation, appropriately

generalized to our setting:

Theorem 3.7 The antisymmetric spectrum of X[k] equals that of Gk
P .

Proof There is an obvious map of vertex sets, B:V [k] → V (Gk
P ), namely inclusion.

While this map is not a morphism of graphs (i.e. does not preserve edge incidences),
remarkably enough B∗, the pullback of Gk

P functions to X[k] functions, does preserve
∆ when restricted to antisymmetric functions (and pulls back antisymmetric functions
to antisymmetric functions). See section 5 for the details.

2

Theorem 3.7 and lemma 3.6 yield theorem 3.3. This completes our proof of theo-
rem 1.2 (modulo the details in sections 4 and 5).

4 Eigenvalues and Quotients

In this section we prove lemma 3.1. We prove it from two observations. The first one
is clear:

Proposition 4.1 If X is d-regular, bipartite graph, and if sign is a bipartition of X,
then the map f 7→ f sign maps eigenfunctions to eigenfunctions, with λ 7→ 2d− λ the
corresponding map on eigenvalues.

Since X[n] is |T |-regular and bipartite, we have λN−1 = 2|T | − λ2 where N = n!. This
holds whenever T is a collection of sign −1 elements of Sn. The following proposition
requires T to consist entirely of elements of order two:
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Proposition 4.2 Let S be a group of order N , and T a set of generators with t2 = 1
for all t ∈ T . Then

λN−1(X(S, T )) = max
t∈T

λmax(X(S, {1, t}, T )).

Proof We begin with two remarks. First, if f is an X(S, T ) eigenfunction and
s ∈ S, then the function g given by g(u) = f(su) is also an eigenfunction of the same
eigenvalue; more generally, ∆ commutes with the “left multiplication” action of S on
functions. Secondly, if H is a subgroup of S and f is an X(S, T ) eigenfunction which
is constant on all H\S cosets, then f can be viewed as a function f̃ on X(S,H, T ),
and f̃ is an eigenfunction with the same eigenvalue as f ; more generally, π ◦∆X(S,T ) =
∆X(S,H,T ) ◦ π, where π is the natural map from functions on S constant on right H
cosets to functions on H\S.

Let f be an eigenfunction corresponding to λN−1 = λN−1(X(S, T )). Let v be such
that f(v) 6= 0. Then (λN−1 − |T |)f(v) is −∑t∈T f(vt), and λN−1 = 2|T | − λ2 < 2|T |,
so we have that f(v) + f(vt) 6= 0 for some t. Then the function gt given by gt(u) =
f(vu)+f(vtu) gives another eigenfunction with the same eigenvalue as that of f . Also
gt does not vanish identically, and is invariant on right {1, t} cosets. Hence gt is an
X(S, {1, t}, T ) eigenfunction, and thus λN−1 ≤ λmax(X(S, {1, t}, T )), and so

λN−1 ≤ max
t∈T

λmax(X(S, {1, t}, T )). (4.1)

We now prove the reverse inequality to equation 4.1. We begin by claiming that
for any t we have λmax(X(S, {1, t}, T )) < 2|T |; indeed, X(S, {1, t}, T ) is connected
(since X(S, T ) is), is |T |-regular, and has a self-loop. So if f is an eigenfunction with
eigenvalue 2|T |, then it is easy to see that the set where |f | takes its maximum is: (1)
nonempty, (2) closed under taking neighbors, and (3) cannot include vertices where ∆
has a self-loop. This contradiction shows that λmax(X(S, {1, t}, T )) < 2|T |.

Now notice that Spec(X(S, {1, t}, T )) ⊂ Spec(X(S, T )), and λN(X(S, T )) = 2|T |.
So λmax(X(S, {1, t}, T )) < 2|T | implies that

λmax(X(S, {1, t}, T )) ≤ λN−1.

Since this holds for all t we conclude, using equation 4.1, the proposition.

2

We finish the proof of lemma 3.1 by noticing that when T is a subset of transposi-
tions of Sn, X[n− 2] is isomorphic to X(Sn, {1, t}, T ) for any t ∈ T .

2
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5 More Details of the Proof

We begin by proving lemma 3.6, starting by describing the Cartesian product of two
graphs X = (V,E) and Y = (W,F ). It is the graph X × Y = (V ×W, E), where E
consist of two types of edges: for each {v1, v2} ∈ E and each w ∈ W we form an edge
{v1 × w, v2 × w}, and similarly for each F edge and V vertex. We have ∆(X × Y ) =
∆(X)⊗IW +IV ⊗∆(Y ), where IV , IW are identity matrices. It follows that if {fi}, {gj}
are bases of X, Y eigenfunctions with eigenvalues {λi}, {νj}, then {fi⊗ gj} is a X ×Y
basis of eigenfunctions with eigenvalues {λi + νj} (here fi ⊗ gj(v, w) = fi(v)gj(w)).

The Cartesian product gives a notion of a power of a graph, Xr. If F(Y ) denotes
the functions on a graph, Y , then F(Xr) is isomorphic to (F(X))⊗r. Under the Sr
action described in section 3, we have that the space of antisymmetric functions on X
is just

∧r(F(X)) viewed as a subspace of (F(X))⊗r. It follows that if {fi} is a basis
for F(X), then

{fi1 ∧ · · · ∧ fir | 1 ≤ i1 < · · · < ir ≤ n}
is a basis for the antisymmetric functions, where

fi1 ∧ · · · ∧ fir =
1

r!

∑
σ∈Sr

sign(σ)fiσ(1) ⊗ · · · ⊗ fiσ(r).

If the {fi} are also eigenfunction of eigenvalues {λi}, then clearly each fi1 ∧ · · · ∧ fir
is an eigenfunction of eigenvalue λi1 + · · · + λir . This therefore produces a basis of
eigenfunctions, and so proves lemma 3.6.

2

We finish with the heart of Bacher’s method, which is the proof of theorem 3.7.
So let GP = (V,E), note V (Gk

P ) = V k, note that V [k] ⊂ V k (since V = {1, . . . , n}),
and let B:V [k]→ V k be the inclusion. Consider an antisymmetric eigenfunction, f , of
eigenvalue λ on Gk

P . Fix I = (i1, . . . , ik) ∈ V [k]; we wish to calculate (∆(B∗f))(I) and
to compare it to (∆(f))(I). First consider the J ∈ V [k] adjacent to I in X[k]; we will
divide them into two types. Let S denote the set of J = (j1, . . . , jk) ∈ V [k] such that
for some a ∈ {1, . . . , k} we have jm = im for m 6= a and (ia, ja) ∈ T and ja is distinct
from i1, . . . , ik. Next let T denote the set of J = (j1, . . . , jk) ∈ V [k] such that for some
a, b ∈ {1, . . . , k} with a < b we have (ia, ib) ∈ T , jm = im for m 6= a, b, ja = ib, and
jb = ia. Clearly S and T are disjoint, and clearly their union is precisely the set of J
which are 6= I and adjacent to I in X[k]. Notice also that for each such J , the edge
{I, J} in X[k] has multiplicity one. Now for J ∈ T we have that J is obtained from I
by switching two coordinates, and so f(J) = −f(I). It follows that

(∆(B∗f))(I) = |S ∪ T |f(I)−
∑

J∈S∪T
f(J) = |S ∪ T |f(I)−

∑
J∈S

f(J)−
∑
J∈T

f(J)

= |S ∪ T |f(I)−
∑
J∈S

f(J) − |T |(−f(I)) =
(
|S| + 2|T |

)
f(I)−

∑
J∈S

f(J).
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Now consider the J ∈ V k adjacent to I in Gk
P . Clearly if J ∈ S, then J is adjacent

to I in Gk
P . However, J ∈ T are not adjacent to I in Gk

P ; instead, for every a < b such
that (ia, ib) ∈ T , we have two Gk

P edges to I; namely the J such that ja = jb = ia and
jm = im for all m 6= a, b, and J ′ with j′a = j′b = ib and j′m = im for all m 6= a, b. Notice
that such J, J ′ have the same a-th and b-th coordinates, and so f(J) = f(J ′) = 0. So if
the set of such J, J ′ is denoted T ′, we have |T ′| = 2|T |. Clearly S, T ′ give all J which
are 6= I and adjacent to I in Gk

P , and for each such J the edge {I, J} has multiplicity
one in Gk

P , and so

(∆(f))(I) = |S ∪ T ′|f(I)−
∑

J∈S∪T ′
f(J) =

(
|S| + 2|T |

)
f(I)−

∑
J∈S

f(J).

It follows that (∆(B∗f))(I) = (∆(f))(I), and so (∆(B∗f))(I) = λf(I) for all
I ∈ V [k]. Hence B∗f is a X[k] eigenfunction with eigenvalue λ. Since all antisymmetric
functions on Gk

P vanish on the vertices V k − V [k], we have that B∗ is an injection

on the space of antisymmetric V k functions. Hence the basis of
(
n
k

)
antisymmetric

eigenfunctions for V k maps to a family of linearly independent V [k] eigenfunctions
under B∗. Furthermore, B∗ clearly maps antisymmetric functions to antisymmetric
functions. Since the dimension of antisymmetric function on V [k] is also

(
n
k

)
, the

antisymmetric eigenvalues of V k are precisely those of V [k].

6 Concluding Remarks

As for future work, especially regarding the question of Lubotzky, perhaps the following
approach is the most interesting.

An involution, σ, is an element of Sn such that σ2 = 1. Such a σ is a product
of disjoint transpositions, and we further call σ an odd involution if it has an odd
number of transpositions. If T consists entirely of odd involutions of Sn then from the
propositions at the beginning of section 4 we have:

λ2(X(Sn, T )) = 2|T | −max
t∈T

λmax(X(S, {1, t}, T )).

While the class of odd involution generated Cayley graphs on Sn is a very restricted
class, and may not yield the best expanders among all possible Cayley graphs on Sn
(of a fixed degree), it seems that there could be enough “randomness” among such
graphs to get a pretty good expander (compared with the best possible). For example,
if n ≡ 2 (mod 4), then any perfect matching of {1, . . . , n} gives an odd involution,
and a “random” collection of a small number of such involutions might behave almost
as “randomly” (i.e. give expansion as good) as a random Cayley graph of the same
degree. Perhaps the above formula could be of use.

Notice that in the above we stick to involutions. It would be nice to have a formula
for λN−1(X(S, T )) in terms of λmax of certain quotients, for (more) general groups S
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and generators T . Notice that the expression

max
t∈T

λmax(X(S, 〈t〉, T ))

is not generally equal to λN−1(X(S, T )) (here 〈t〉 is the subgroup generated by t).
(Take S to be a cyclic group of order > 2, and T = {t, t−1} where t is a generator of
S.)

Finally we mention the interesting question of the multiplicity of λ2 in general
Cayley graphs X(Sn, T ). If the multiplicity of λ2 in X(Sn, T ) is greater than n−1 times
that in X[1], it would mean there are some other representations whose corresponding
eigenfunctions achieve an eigenvalue of λ2. It would be interesting to know what these
representations and eigenfunctions are. Perhaps such T represent borderline cases
between those where λ2(X(Sn, T )) < λ2(X[1]) and those where they are equal.

As for eigenfunctions, it is interesting to compare the representation theory eigen-
functions with those constructed in Bacher’s approach. We finish this section by show-
ing that the two sets of eigenfunctions constructed span the same space.

The representation theory eigenfunctions arise from how the standard representa-
tion lies in the regular representation. To understand this, let GP = (V,E) as before,
so that V = {1, . . . , n}, let C(A) for a set A denote the real-valued functions on A, and
let S be those elements of C(V ) with sum over all vertices equal zero. Then Sn acts on
V in the obvious way, which gives the Sn action on S, σ(f)(v) = f(σ(v)) for v ∈ V ,
f ∈ S, and σ ∈ Sn. Clearly S is the standard representation.

Recall that V [n] is the set of n-tuples (v1, . . . , vn) with distinct vi in {1, . . . , n},
and that V [n] is identified with Sn with a σ ∈ Sn corresponding to (σ(1), . . . , σ(n)).
Projection onto the j-th coordinate gives a map πj :V [n] → V ; this gives rise to an
embedding π∗j of S into C(V [n]) ' C(Sn), and hence to a copy of S in C(S[n]) which we
denote Sj = π∗j (S). We claim that S1, . . . ,Sn−1 are independent subspaces of C(Sn).
This follows immediately from the lemma below:

Lemma 6.1 Let fi ∈ C(V ) for i = 1, . . . , n−1 satisfy π∗1f1 + · · ·+π∗n−1fn−1 = 0. Then
each fi is constant on V .

Proof For any distinct v1, . . . , vn in V we have

f1(v1) + f2(v2) + · · ·+ fn−1(vn−1) = 0 = f1(vn) + f2(v2) + · · ·+ fn−1(vn−1),

and so f1(v1) = f1(vn). It follows that for any distinct v1, vn ∈ V (we can find v2, . . .
so that the vi are distinct and hence) we have f1(v1) = f1(vn). Hence f1 is constant
on V . Similarly so are the other fi.

2

The above gives us n − 1 independent embeddings of S into C(Sn) (and we know
this is the maximum possible). So if f1, . . . , fn are a basis of eigenfunctions for GP

corresponding to eigenvalues 0 = λ1 ≤ · · · ≤ λn, then fij = π∗j fi, i.e.

fij(v1, . . . , vn) = fi(vj),
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gives for i ≥ 2 and j = 1, . . . , n− 1 independent X(Sn, T ) eigenfunctions of eigenvalue
λi. These are “the” representation theory eigenfunctions; of course, the particular
functions depend on our n − 1 embeddings of S in C(Sn); yet their span does not
depend on the embeddings.

Of course, π∗1 + · · ·+π∗n is zero on S, so we cannot add j = n to the above collection
of functions. Similarly fij for i ≥ 2 and j ranging over any n− 1 values of {1, . . . , n}
gives independent eigenfunctions with the same span as above.

Next we show that the eigenfunctions implicitly described in sections 3–5 give
a different but equivalent set of eigenfunctions. So for each t ∈ T , t = (j, k), let
πt:V [n] → V [n − 2] be the map dropping the j-th and k-th coordinates. For each
i ∈ {1, . . . , n} let

Fi = f2 ∧ f3 ∧ · · · ∧ fi−1 ∧ fi+1 ∧ · · · ∧ fn.
Then f̃it = sign · π∗tFi is an eigenfunction of eigenvalue λi.

Theorem 6.2 The f̃it, for i ≥ 2 and t ∈ T span the same space as the fij, i ≥ 2 and
j ∈ {1, . . . , n}.

Proof This theorem follows quite easily from the theorem below. For any set A there
is a natural inner product on C(A), (f, g) =

∑
a∈A f(a)g(a).

Theorem 6.3 Assume that f1, . . . , fn are orthogonal. Then for each i ≥ 2 and t =
(j, k) ∈ T there is a c 6= 0 such that f̃it = c(fik − fjk).

Proof Without loss of generality we may assume t = (1, 2). Clearly f̃it(v1, . . . , vn)
is invariant upon exchanging any two of v3, . . . , vn (since the sign and the π∗tFi each
contribute a −1 to such an exchange). Hence f̃it(v1, . . . , vn) = f̃it(v1, v2) is a function
of v1 and v2. Also f̃it(v2, v1) = −f̃it(v1, v2), since π∗tFi is invariant upon exchanging
the first two variables, and sign gives a −1 upon this exchange. It follows that f̃it ∈∧2(C(V )), and so

f̃it(v1, v2) =
∑
a<b

cabfa ∧ fb(v1, v2)

for some constants cab. A standard (and easy) calculation show that since the fa
are orthogonal, so are the fa ∧ fb (in the C(V [2]) inner product). So cab = 0 iff
(f̃it, fa ∧ fb) = 0; we now check the latter. Now

(f̃it, fa ∧ fb)V [2] = (n− 2)!( sign · π∗tFi, fa ∧ fb ⊗ 1⊗ · · · ⊗ 1)V [n]

= (n− 2)!( sign, fa ∧ fb ⊗ Fi)V [n],

and the right-hand-side clearly vanishes unless a = 1 and b = i. Hence f̃it = c1if1 ∧
fi(v1, v2) = c(fi(v2)− fi(v1)) since f1 is constant. Thus f̃it = c(fik − fij), and clearly
c 6= 0 since f̃it is not identically zero (since Fi isn’t).

2
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We remark that the above theorem needs the orthogonality condition. For fij , fik
depend only on fi, while f̃it depends on all fm except m = i, 1. So if fi corresponds to
an eigenvalue of multiplicity s > 1, holding fm fixed for m 6= i, 1 and varying fi keeps
f̃it fixed while lets f1 ∧ fi vary over an s-dimensional space minus some 1-dimensional
subspaces.

Now we finish the proof of theorem 6.2. First assume that the fi are orthogonal.
We are reduced to proving the following: let W be a vector space with w1, . . . , wn ∈ W
satisfying w1 + · · ·+wn = 0 but are otherwise independent (i.e. any n− 1 of them are
independent). Then the span of the wi equals the span of wk − wj over all (j, k) ∈ T .
Clearly the span of the latter lies in that of the former. So let H = (V, F ) be a spanning
tree of GP , let r ∈ V be an arbitrary vertex (thought of as the root of H), and orient
the edges of F “away from r” (so H is now a directed tree). It suffices to show that
w̃t = wk − wj over t = (j, k) ∈ F are linearly independent.

First note that
∑
diwi = 0 and

∑
di = 0 implies that all the di are zero. Now

assume that
∑
t∈F ctw̃t = 0 with ct 6= 0 for some t. Then

∑
ctw̃t =

∑
diwi with

di =
∑

t=(j,i)∈F
ct −

∑
t=(i,j)∈F

ct.

So clearly
∑
di = 0. But if t = (i, j) is an edge of maximal distance from r with ct 6= 0,

the dj = ct 6= 0, a contradiction
Finally, we consider general f2, . . . , fn (i.e. not necessarily orthogonal). We have

that the span of {fi}i≥2 is the orthogonal complement of f1, regardless of the choice
of {fi}i≥2. Hence the span of the fij = π∗j fi is independent of the choice of {fi}i≥2.
Similarly the span of Fi (with i ≥ 2) is the orthogonal complement of

{f1 ∧ w | w ∈
∧n−3(F(V ))}.

Hence the span of f̃it = π∗tFi is independent of the choice of {fi}i≥2.

2

A Remarks on X [k]

After one paragraph of minor technical remarks on X(G,H, T ) we spend the rest of
this section making bibliographical remarks about X[k].

Notice that there is some ambiguity in how to make X(G,H, T ) into an undirected
graph (in the presence of multiple edges or self-loops). But these ambiguities don’t
affect ∆ (or the adjacency matrix), and are easily resolved by insisting that T come
with an involution σ such that t(σ(t)) = 1 for all t. Also, we can weaken the condition
that T be closed under taking inverses to T coming with an involution σ such that
t(σ(t)) lies in the core1 of H in G for all t.

1The core of H in G is
⋂
g∈G gHg

−1, i.e. the largest normal subgroup of G lying in H .
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We now briefly remark on where λ2 of the graphs X[k] has been studied elsewhere.
First, in the contexts of random graphs, if we take d random elements of Sn, take their
inverses, we get a set, T , of 2d elements of Sn closed under taking inverses. The resulting
X[1] is the usual model of a random regular graph studied in [BS87, FKS89, Fri91]; in
[Fri91] it is shown that λ2 = 2d − 2

√
2d + O(log d) with high probability as n → ∞;

unresolved is the conjecture of Alon (see [Alo86]) that λ2 ≥ 2d − 2
√

2d− 1 − ε for
any ε > 0 with high probability, even though numerical evidence indicates that λ2 ≥
2d − 2

√
2d− 1 probably holds in most cases (see [Fri93]). The study of λ2 of X[k]

becomes important to the “quick k-transitivity” of the graph X[1] (see [FJR+96]),
where a question in cryptography can be resolved using the fact that λ2 of X[k] is
≥ 2d − 2d(1 + ε)d−1/(k+1)(2d − 1)1/(2k+2) with high probability (for any fixed ε > 0,
with k, d fixed and n→∞).

Second, Lubotzky (see [Lub95]) asks whether there are Cayley graphs on Sn which
are expanders, in the sense that there should exist a d and ε > 0 and sequence Xn of
d-regular Cayley graphs on Sn with λ2(Xn) ≥ ε. In other words, is there a fixed d and
ε > 0 such that for any n there is a subset T ⊂ Sn of size d with λ2(X(Sn, T )) ≥ ε. In
the language of the previous paragraph, X(Sn, T ) = X[n], and so the previous question
is one about λ2(X[n]) for the optimal T of a certain size. Equation 2.1 gives rise to an
inclusion of spectra:

Spec(X[0]) ⊂ Spec(X[1]) ⊂ · · · ⊂ Spec(X[n]). (A.1)

From the previous paragraph we know that for any k there are d and ε > 0 such that for
any n we have λ2(X[k]) ≥ ε for some T of size d. So even if the answer to Lubotzky’s
question is negative, we might ask for which functions f(n) is there a d and ε > 0 such
that for all n we have the same holding with k = f(n); in other words, at which point
in equation A.1 do small Laplacian eigenvalues enter in? We can also ask a similar
question where d varies with n; this has been studied for T being a conjugacy class by
Roichman in [Roi97].

Thirdly, in the context of the main theorems in this paper, we are saying that in
equation A.1, between Spec(X[1]) and Spec(X[n]), all new eigenvalues arising are at
least as great as λ2(X[1]), in a certain special case. Indeed, if T consists entirely of
transpositions, then if we take X[1] and delete all its self-loops (of which there are
very very many), we get T ’s primitive graph, GP . So Spec(GP ) = Spec(X[1]); and the
relationship between theorem 1.2 and the above is clear. It would be quite remarkable
if such relations between Spec(X[1]) and Spec(X[n]) held for a large class of T (if it
held for most T of fixed size d as n→∞ then Lubotzky’s question would be true); it
might be interesting to ask for which T this holds.
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regular graphs. In 21st Annual ACM Symposium on Theory of Computing,
pages 587–598, 1989.

[FOW85] L. Flatto, A.M. Odlyzko, and D.B. Wales. Random shuffles and group
representations. Annals of Probability, 13:154–178, 1985.

[Fri91] J. Friedman. On the second eigenvalue and random walks in random d-
regular graphs. Combinatorica, 11:331–362, 1991.

[Fri93] Joel Friedman. Some geometric aspects of graphs and their eigenfunctions.
Duke J. Math, 69:487–525, 1993.

14



[Lub94] Alexander Lubotzky. Discrete Groups, Expanding Graphs and Invariant
Measures. Birkhauser, 1994.

[Lub95] A. Lubotzky. Cayley graphs: Eigenvalues, expanders and random walks.
1994/95. preprint.

[Moh91] B. Mohar. The Laplacian spectrum of graphs. In O.R. Ollermann Y. Alavi,
G. Chartrand and A.K. Schwenk, editors, Graph theory, combinatorics and
applications, pages 871–898, New York, 1991. Wiley.

[Roi96] Yuval Roichman. Upper bound on the characters of the symmetric groups.
Invent. Math., 125(3):451–485, 1996.

[Roi97] Yuval Roichman. Expansion properties of Cayley graphs of the alternating
groups. J. Combin. Theory Ser. A, 79(2):281–297, 1997.

[Ser82] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag,
1982.

[Tan84] R.M. Tanner. Explicit concentrators from generalized n-gons. SIAM J. Alg.
Disc. Methods, 5:287–293, 1984.

15


