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Abstract

We use the Laplacian and power method to compute Betti numbers of sim-
plicial complexes. This has a number of advantages over other methods, both in
theory and in practice. It requires small storage space in many cases. It seems to
run quickly in practice, but its running time depends on a ratio, ν, of eigenvalues
which we have yet to fully understand.

We numerically verify a conjecture of Björner, Lovász, Vrećica, and Z̆ivaljević
on the chessboard complexes C(4, 6), C(5, 7), and C(5, 8). Our verification suf-
fers a technical weakness, which can be overcome in various ways; we do so for
C(4, 6) and C(5, 8), giving a completely rigourous (computer) proof of the con-
jecture in these two cases. This brings up an interesting question in recovering
an integral basis from a real basis of vectors.

1 Introduction

A fundamental and important set of invariants of a topological space, X, is its col-
lection of homology groups, Hi(X) = Hi(X,Z). Computing these groups is of great
importance, especially in topology and pure mathematics. However, there are nu-
merous applied areas where computing homology is of interest. These include pattern
recognition and classification in biology, chemistry, robotics, and scene analysis, involv-
ing low dimensional topological spaces, as well as time series analysis and dynamical
systems, involving higher dimensional spaces (see [Cha95]).

1



A part of the homology groups are the Betti numbers, the i-th Betti number,
bi = bi(X), being the rank of Hi(X). The Betti numbers often have intuitive meanings.
For example, b0 is simply the number of connected components of the space. As another
example, the oriented two-dimensional manifolds are completely classified by b1 = 2g,
where g is the genus (i.e. number of “handles”) of the two-manifold. Knowing the Betti
numbers is the same as knowing the rational homology (i.e. homology with rational
coefficients), which is the same as knowing the homology groups, Hi(X), up to torsion.

When one wants to know the homology groups, sometimes it suffices to know the
Betti numbers. First, if one is trying to distinguish two objects via their homology,
their Betti numbers may already distinguish them; similarly, to prove the nonvanishing
of a homology group it suffices (but is not necessary) to have the corresponding Betti
number vanish. Second, there are certain situations where one a priori knows that
there is no torsion in the homology groups; then homology is completely described by
the Betti numbers. Moreover, it is often much simpler to compute the Betti numbers,
and so one does this as a first step in determining the homology groups.

A simplicial complex is a collection of subsets (called faces) of a fixed set, S, which
is closed under taking subsets. It gives rise to a certain topological space, and the
homology of any “reasonable” topological space can be computed from those of an
“approximating” simplicial complex (see [Mun84]). In this paper we restrict ourselves
to input data being a simplicial complex (actually it suffices to list the maximal faces).
In applications one is often given a topological space directly in this form.

Computing homology at present seems hard; currently algorithms require comput-
ing the Smith normal form of the matrix. The latter can be done in polynomial time
(see [KB79]), but the current polynomial required is still quite large in degree1. Com-
puting Betti numbers, on the other hand, seems much easier. To find bi, one only need
compute the ranks of two matrices. This gives what might be called the “standard algo-
rithm,” requiring S = O(Tni(ni−1 +ni+1)) storage and O(S max(ni, ni−1 +ni+1) log T )
operations, where ni is the number of i-faces (i.e. faces of dimension i, i.e. subsets of
size i + 1), and where T is the number of storage registers needed to store a matrix
entry during the rank calculation; unless the model allows storage registers of arbitrary
size, T would need to be O(min(ni, ni−1 + ni+1)). This points to a practical problem:
when the nj are large an exact computation of the rank may be unreliable unless a
multiple precision package is used; thus the operations become very expensive. It be-
comes important to have techniques for computing the Betti numbers which are faster
and require less storage.

As a step in this direction, [DE93] give an algorithm to compute Betti numbers;
it works in almost linear time in the ni, but only works for subtriangulations of R3.
Their method is based on a standard type of topological induction, and for more general
simplicial complexes it is not clear how to make this method fast.

1In [DC91] it is claimed that this can be done faster for sparse matrices, but the latest version of
this paper still has serious flaws.
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In this paper we exploit the combinatorial Laplacian to give a simple algorithm to
compute the Betti numbers of a simplicial complex. It gives an algorithm which given
ε, δ > 0 computes bi with probability ≥ 1− δ, requiring S = O(ni(di + bi)) storage and
O(S(bi + 1)r) + O(ni(n0 − i)(i + 1) log N) operations; here N = max(ni−1, ni, ni+1),
di is the average degree of the i-th Laplacian (always ≤ 1 + (i + 1)(n0 − i − 1)),
and r = O(log(nibiδ

−1ε−1ν−1)/ν), where ν = (3/4)λ1/λmax is a ratio of Laplacian
eigenvalues discussed later; here we are assuming that ε is chosen so that 2εbi < ν. We
do not need to know ν or bi before we choose ε, but we do need to choose ε so that
we are confident that 2εbi < ν holds; in practice this doesn’t seem to be a problem.
It is an important question to determine what ν is, in various situations. In examples
of interest here, 1/ν is always ≤ 25 while ni gets as high as around 10, 000. We know
that for i = 0, 1, ν can be as small as roughly 1/n2

i ; we also know that for i = 0 we
have ν ≥ 1/2 with high probability in certain random settings.

After running the main algorithm, one can try to verify rigourously (not merely with
high probability and not requiring assumptions on ν) that bi is at least the computed
value for bi by an “integralizing” process. This requires no more storage and less time
than does the main algorithm. However, this does not always work in single or double
precision, and brings up an interesting question about the ability to “integralize.”

We use our algorithm to compute the Betti numbers of a number of complexes,
especially the “chessboard complexes” (see [BLVZ̆94]); these complexes arise in sev-
eral contexts, including some combinatorial geometric problems where there homology
groups are of interest (see [Z̆V92, ABFK92]). We use our algorithm to verify a conjec-
ture of [BLVZ̆94] involving three of the chessboard complexes. In two cases we are able
to “integralize” and give rigourous demonstrations of the conjecture in these cases. We
also notice that all eigenvalues of the Laplacians are integers for all the complexes we
checked; we conjecture this is always true2.

We also mention that with our algorithm it is much easier to verify (with high
probability) that a Betti number vanishes, rather than to show that it doesn’t and
to evaluate it. But indeed, for a large class of combinatorial complexes (e.g. those
which are shellable) only one Betti number other than b0 = 1 does not vanish; for these
complexes we can compute all the Betti numbers (using the known Euler characteristic)
as soon as we can detect whether or not a Betti number vanishes. This method was
used in [Fri92] to help successfully calculate the Betti numbers of a large family of
complexes.

We finish by summarizing the rest of this paper. In section 2 we describe the com-
binatorial Laplacians by way of Hodge theory. In section 3 we analyze some algorithms
for determining the largest eigenvalue of a symmetric matrix and the eigenvalue’s mul-
tiplicity. In section 4 we prove theorems about our Betti number computing algorithms.
In section 5 we give two complexes whose Betti numbers we compute via our algorithm,
and we give some computational data about our numerical experiments. In section 6

2This has lead to the recent work [FH], where this and part of the [BLVZ̆94] conjecture is proven.
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we describe our findings on the chessboard complexes. In section 7 we describe some
provable and some conjectural lower bounds for λ1 and λ1/λmax of the i-th Laplacian.

2 Hodge Theory and the Laplacian

Our main tool is to use the combinatorial Laplacians (see [Hod41, Eck45, Dod76,
DP76]) to compute the Betti numbers. These Laplacians are most easily described via
the Hodge theory of Hodge [Hod41].

Recall that the Betti numbers, bi, are the dimensions of the homology groups,
Hi = ker(∂i)/im(∂i+1) of the chain complex,

· · · −→ Ci+1
∂i+1−→ Ci ∂i−→ Ci−1 −→ · · · −→ C−1 = 0, (2.1)

where Ci is the space of formal R-linear sums of oriented i-dimensional faces, i.e.
oriented subsets of the abstract simplicial complex of size i+1, and ∂i is the boundary
map (see [Mun84]).

Concretely, for each face, A, we fix an ordering of its vertices, A. ∂i is an ni−1× ni
matrix indexed on the (i − 1)- and i-faces as follows: if A, B are i- and (i − 1)-faces
respectively, with orderings A,B, then ∂i at B, A is zero unless B ⊂ A; if B ⊂ A, then
there is a unique permutation π on A such that B is π(A) minus its first element (in
order), and ∂i at B, A is the sign of π.

So the “standard algorithm” to compute bi referred to in the introduction is simply
to determine the ranks of ∂i and ∂i−1.

Hodge theory works for an arbitrary chain complex over R (or any field of charac-
teristic 0, such as Q or C). Recall that a chain complex is a collection, Ci, of vector
spaces, with maps ∂i: Ci → Ci−1, as in equation 2.1, such that ∂i−1 ◦ ∂i = 0 for all i.
Endowing each Ci with an inner product, we get maps ∂∗i : Ci−1 → Ci (i.e. the transpose
of ∂i), and thus a Laplacian (as in [Dod76]), ∆i: Ci → Ci, for each i, defined by

∆i = ∂i+1∂
∗
i+1 + ∂∗i ∂i.

For each i we define the set of harmonic i-forms to be

Hi = {c ∈ Ci|∆ic = 0}.

For chain complexes where each Ci is a finite dimensional R-vector space, Hodge theory
involves only elementary linear algebra, and says:

Proposition 2.1 (Hodge theory) For each i we have Hi
∼= Hi, in that each member

of Hi gives rise to a class in Hi, and each class in Hi contains a unique harmonic form
in Hi.

In more detail, for each i we have that Ci decomposes into orthogonal subspaces

Ci = Hi ⊕ im(∂i+1)⊕ im(∂∗i ).
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The Laplacian is positive definite on the latter two summands and is invariant on
each. ∂i+1∂

∗
i+1 is invariant on the middle summand and vanishes on the other two,

and similarly for ∂∗i ∂i.

Proof Follows easily from the facts that (1) A = ∂∗i ∂i and B = ∂i+1∂
∗
i+1 are positive

semi-definite and commute, satisfying AB = BA = 0, and (2) imS = im(S ◦ S∗) for
any map of finite dimensional inner product spaces, S: V →W .

2

We may therefore calculate the Betti numbers as the dimension of the Hi. The
algorithm we will give works better the larger the eigenvalues of ∆i are on im(∂i+1)⊕
im(∂∗i ); this space is just H⊥i , by Hodge theory. One easy observation which we will
use is:

Proposition 2.2 The set of (non-zero) eigenvalues of ∆i on H⊥i is a subset of the
union of those of ∆i−1 on H⊥i−1 and of ∆i+1 on H⊥i+1.

Proof This follows immediately from Hodge theory and the fact that for any matrix,
A, we have that AA∗ and A∗A have the same set of non-zero eigenvalues.

2

3 The Power Method

In this section we discuss the usual power method for finding the largest eigenvalue.
We will give an analysis of certain aspects of it which we will need.

Let A be a symmetric matrix, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and an
orthonormal set of eigenvectors, ui, i = 1, . . . , n, with Aui = λiui. (At the end of
this section we weaken the restriction λn ≥ 0.) We wish to find λ1, and perhaps its
multiplicity and a basis for its eigenspace.

Our version of the power method finds λ1 as follows. We choose a random vector,
v, by taking its coordinates to be iid normal with mean 0 and variance 1. We set
vr = Arv, and consider

T (vr) = (Avr, Avr)/(vr, vr) = (vr+1, vr+1)/(vr, vr),

where ( , ) denotes the inner product. T (vr) should converge to λ2
1, and accordingly vr

should approach (when suitably normalized) an eigenvector. We take r large enough
(see below) so that T (vr) is close to λ2

1. If we only wish to find λ1, we are done.
If we wish to determine the multiplicity of λ1, we set u1 = vr/‖vr‖, and apply

the same power method to Ã = PAP where P is the projection onto the orthogonal
complement of v1. The power method gives us a sequence vi, each orthogonal to u1,
with T (vr) approaching λ2

2. Again, for large r we see if T (vr) is close (see below)
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to our computed value of λ2
1. If not we are done; if so we start a third sequence of

iterations, on Ã = PAP with P projecting out u1, u2. Continuing in this way we will
find orthonormal u1, . . . , um with each T (ui) close to λ2

1, and the next set of iterations
giving vi with T (vr) not close to λ2

1; we conclude λ1 has multiplicity m.
We now analyze the algorithm.
Let pi = (v, ui). The pi are therefore iid N(0, 1). The quantity

L = (p2
2 + · · ·+ p2

n)/p
2
1

will be crucial to analyzing the convergence of the power method; for example, if
λ2 6= λ1 then L <∞ iff the power method converges. It is not hard to estimate:

Lemma 3.1 For any α > 0, the probability that L ≥ nα is at most
√

2/(πα).

Proof See [Fri95].
L’s importance can be seen from the next lemma.

Lemma 3.2 Let T (vr) ≤ λ2
1(1−η) for some r and η > 0. Then L ≥ η(1−η)−r. Also,

if λ1 has multiplicity m and λm+1/λ1 = µ, then L ≥ ηµ−2r.

Proof We will easily reduce this to the following lemma:

Lemma 3.3 If q2, . . . , qn are reals with
∑

q2
i ≤ K, then for any λ2, . . . , λn ∈ R with

|λi| ≤ 1 for all i we have:
1 +

∑
i>1 λ2r+2

i q2
i

1 +
∑
i>1 λ2r

i q2
i

≤ 1− η

implies that K(1− η)r ≥ η. Also, if λi ≤ µ whenever λi 6= 1, then η ≤ Kµ2r.

Proof Call the left-hand-side of the above equation f , viewed as a function of the λi
and the qi.

First we claim that f is minimized when all the λi are equal up to sign. Indeed,
viewing the qi as fixed, it is clear that f achieves its minimum, fmin somewhere with the
λi ranging over the compact set [−1, 1]n. By differentiating g(λ) = (A+ q2λ2r+2)/(B +
q2λ2r) one sees that g is minimized when λ2 = (r/(r + 1))g(λ). So at the minimum we
have λ2

i = (r/(r + 1))fmin for each i, and so all λi are equal there up to sign.
So at its minimum value,

f =
1 + Qλ2r+2

1 + Qλ2r
= 1− λ2r − λ2r+2

(1/Q) + λ2r

where Q =
∑

q2
i , which is clearly minimized when Q is as large as possible, namely K.

So it remains to consider the minimum of:

f(λ) =
1 + Kλ2r+2

1 + Kλ2r
.
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Now if f(λ) ≤ 1− η then we have λ2 ≤ 1− η, since

f(λ) =
(

1

1 + Kλ2r

)
+

(
Kλ2r

1 + Kλ2r

)
λ2 ≥ min(1, λ2).

So f(λ) ≤ 1− η implies λ2 ≤ 1− η; since

f(λ) = 1− (1− λ2)

(
Kλ2r

1 + Kλ2r

)
≥ 1− (1− λ2)Kλ2r ≥ 1−Kλ2r,

we can apply λ2 ≤ 1− η to the last term in this string of inequalities and conclude

f(λ) ≥ 1−K(1− η)r;

but f(λ) ≤ 1− η applied to this last inequality implies K(1− η)r ≥ η.
Finally, in the case λi ≤ µ whenever λi 6= 1, a similar argument shows that f ’s

minimum is achieved when all λi 6= 1 are equal, say equal λ, and when Q is as large
as possible. Thus f({λi}, {qi}) is lower bounded by

f(λ) =
1 + Kλ2r+2

1 + Kλ2r
= 1− (1− λ2)Kλ2r

1 + Kλ2r
≥ 1−Kλ2r ≥ 1−Kµ2r.

So f(λ) ≤ 1− η implies Kµ2r ≥ η.

2

To finish the proof of the former lemma, observe that

‖Avr‖2

‖vr‖2
=

λ2r+2
1 p2

1 +
∑
i>1 λ2r+2

i p2
i

λ2r+2
1 p2

1 +
∑
i>1 λ2r

i p2
i

=
1 +

∑
i>1(λi/λ1)

2r+2(pi/p1)
2

1 +
∑
i>1(λi/λ1)2r(pi/p1)2

,

and observe that if qi = pi/p1 then
∑
i>1 q2

i = L.

2

Combining the first two lemmas of this section easily yields:

Theorem 3.4 The probability that T (vr) ≤ (1− η)λ2
1 is at most

η−1/2(1− η)r/2
√

2n/π.

This probability is less than δ provided that r ≥ − log1−η(2nδ−2η−1π−1) (or that r ≥
log(2nδ−2η−1π−1)/η since − log(1− η) > η).

The above theorem tells us how soon the Rayleigh quotient T (vr) approaches λ2
1.

To find the multiplicity of λ1, we need the following result.
Let u1, . . . , uk be k be orthonormal vectors such that T (ui) ≥ (λ1 − ε)2 for some

ε > 0. Let P be the projection onto the subspace orthogonal to the ui, and let
Ã = PAP .
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Theorem 3.5 If A has eigenvalue λ1 with multiplicity m, then Ã has eigenvalue λ1

with multiplicity m − k. The second eigenvalue, µ2, of Ã satisfies λm+1 ≤ µ2 ≤
λm+1 + εk.

Proof This is standard and easy. If w1, . . . , wm−k are orthonormal, orthogonal to the
ui, and in the eigenspace of A with respect to λ1, then each wi is clearly an eigenvector
of Ã with eigenvalue λ1. This Ã has eigenvalue λ1 with multiplicity at least m − k.
If v is a unit vector maximizing R(v) = (Ãv, v)/(v, v) subject to being orthogonal to
the wi, then clearly Pv = v (or else R(Pv) < R(v)); hence R(v) = (Av, v), which is
the next largest eigenvalue of Ã. An easy calculation shows that for any symmetric
matrix, B, and orthonormal s1, . . . , sr we have

r∑
i=1

(Bsi, si) ≤
r∑
i=1

ρi,

where ρi is the i-th largest eigenvalue of B. In particular we have

mλ1 +λm+1 ≥
∑

(Awi, wi)+
∑

(Aui, ui) + (Av, v) ≥ k(λ1− ε)+ (m− k)λ1 +(Ãv, v),

which proves µ2 ≤ λm+1 + εk. But clearly we can find a v in the span of the λ1

and λm+1 eigenvectors of A orthogonal to the wi and ui, and for such a v we have
(Av, v) ≥ λm+1; also for such a v we have Pv = v, which shows that µ2 ≥ λm+1.

2

Theorem 3.6 Let A have eigenvalue λ1 with multiplicity m. Fix an ε > 0 and set
µ = mε + (λm+1/λ1). Then in m applications of the power method of r iterations
each, we will find orthonormal vectors w1, . . . , wm vectors with T (wi) ≥ λ2

1(1−ε)2 with

probability at least 1−mµr
√

2n/(πη), where η = 2ε− ε2. This probability is ≥ 1− δ if

r ≥ (1/2) log
(
nm2/(ηδ2)

)
/(1− µ).

Remark 3.7 Clearly all the theorems and lemmas in this section hold for arbitrary
symmetric matrices A, provided that (1) we label the eigenvectors in increasing ab-
solute value, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, and (2) all statements made about a λi are
replaced with |λi|.

4 Algorithms and Theorems

Recall that we are computing the Betti number, bi, as the dimension of the kernel of
∆i, the i-th Laplacian, which is a rather sparse, ni×ni positive semi-definite symmetric
matrix, where ni is the number of faces of dimension i.
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In this section we use the power method to compute the multiplicity of the eigen-
value 0 of ∆i, thereby computing bi. The algorithm actually finds the number of
eigenvalues of ∆i less than a prescribed parameter; to verify that all these eigenvalues
are 0, we can try an “integralization algorithm” for a rigourous verification (we can
also use a lower bound on λ1 the first non-zero eigenvalue of ∆i, if such a bound is
available). We make some further remarks about computing other eigenvalues of ∆i

as well.
First we must construct ∆i; let di denote its average degree (i.e. average number

of nonzero entries per row). Let X be a simplicial complex, and let Xi be the i-faces.
We assume that each Xi is specified as a binary word of length n0 in the obvious way
(from some ordering of X0).

Proposition 4.1 The matrix ∆i can be obtained from a list of Xi and Xi+1 in space
O(nidi) and time T = O(ni(n0 − i)(i + 1) log N) where N = max(ni−1, ni, ni+1).

Proof We begin by sorting the Xi and Xi+1. Since clearly ni+1 ≤ (n0 − i)ni (consid-
ering the map from Xi+1 to Xi of deleting the smallest vertex), the sorting takes time
O(ni(n0 − i) log N).

For α, β ∈ Xi, consider the ∆i entry corresponding to α, β. If α = β, this entry is
equal to the number of γ ∈ Xi−1 such that γ ⊂ α plus the number of γ ∈ Xi+1 such
that α ⊂ γ; one can count this number in n0(log(max(ni−1, ni+1))). If α 6= β, then
this entry is zero if β does not differ from α by one element (i.e. if |α ∪ β| 6= i + 1); if
β differs from α by one element (of which there are (i + 1)(n0 − i − 1) such β’s for a
fixed α), then the entry is zero if α ∪ β ∈ Xi, and is ±1 otherwise (depending on the
position of the elements where the ordered α, β differ). So this entry can be found in
time O(log(ni+1)) for each α, β (determining the position of the elements where α, β
differ comes at O(1) cost if for fixed α we loop through the possible β appropriately).

2

Next we describe two algorithms for Betti numbers, using the power method. The
first algorithm just tests if a Betti number is nonzero; we will get a sharp bound on the
number of power method iterations needed. The second algorithm (which is slightly
more complicated) finds a Betti number under certain assumptions. Both algorithms
have two phases, and both begin by picking a δ > 0 and then ensure that each phase
fails with probability ≤ δ/2. Both algorithms have the same first phase, which is to
bound ∆i’s largest eigenvalue.

Let ∆i’s first (i.e. smallest) non-zero eigenvalue be λ1 (notice the change in notation
from the previous section), and its largest eigenvalue be λmax. We start by finding with
probability ≥ 1− (δ/2) a good approximation of λmax. We apply the power method to
∆i, simply applying it

r =
⌈
log9/4

(
niδ
−272/(5π)

)⌉
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times and setting B̃ =
√
T (vr) (notation as in the previous section); applying theo-

rem 3.4 taking η = 5/9 and δ replaced here by δ/2, we conclude that λmax ≤ 3B̃/2
with probability ≥ 1− (δ/2). Of course, B̃ ≤ λmax.

If X1 is empty and X is just a collection of vertices, it is trivial to compute the
Betti numbers (b0 = n0, bi = 0 for i ≥ 1). If not, then ∆i contains a positive integer
somewhere along its diagonal. Hence λmax ≥ 1. It follows that if we round B̃ up to
the next integer, B, we have B ≤ 2λmax, and λmax ≤ 3B/2.

Next set A = B · I −∆i where I is the identity matrix. bi is the multiplicity of B
as an eigenvalue of A. A’s smallest eigenvalue, µmin, is at least −B/2; let µ2 denote
A’s largest eigenvalue < B. Now we apply the power method to A. If T (vr) does not
seem to converge to B2, we can stop according to theorem 3.4; i.e. when it tells us
that with probability ≥ 1− (δ/2) A does not have an eigenvalue as large as B.

Specifically, let ηj for j = 0, 1, . . . be determined via T (vj) = (1− ηj)B
2. Our first

algorithm applies the power method to A and stops at the r-th iteration provided that

r ≥ − log1−ηr

(
niδ
−2(1− ηr)

−18/π
)
. (4.1)

At this point we know that A has B as an eigenvalue with probability at most δ/2.
Overall, then, we conclude that with probability ≤ δ the Betti number, bi, is positive.

The question, of course, is given that bi = 0, how many iterations will it take until
r and ηr satisfy equation 4.1.

Theorem 4.2 Assume bi = 0. Set ν = (3/4)(λ1/λmax) with λ1, λmax as before. Then
ηi ≥ ν for all i. Hence our algorithm detects that bi = 0 with probability at least 1− δ
after at most ⌈

log9/4

(
niδ
−272/(5π)

)⌉
+
⌈
− log1−ν

(
niδ
−2(1− ν)−18/π

)⌉
iterations.

Proof It suffices to prove the first claim. We have

T (vr) ≤ max(µ2
2, µ

2
min),

so that T (vr) ≤ (1− η)B2 where

η = min
(
1− (µ2

min/B
2), 1− (µ2

2/B
2)
)
≥ min

(
3/4, 1− (B − λ1)

2/B2
)

= min
(
3/4, 2(λ1/B)− (λ1/B)2

)
.

This last expression is
≥ min

(
3/4, (3/2)(λ1/B)

)
since for x ∈ [0, 1] either x ≥ 1/2, in which case 2x − x2 ≥ 3/4, or x < 1/2, in which
case 2x− x2 = x(2− x) ≥ (3/2)x. Since λmax ≤ 2B we have

min
(
3/4, (3/2)(λ1/B)

)
≥ min

(
3/4, (3/4)(λ1/λmax)

)
= ν,

and the theorem follows.
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2

Our first main theorem easily follows:

Theorem 4.3 Assume bi = 0, and let λ1 > 0 and λmax be the smallest and largest
eigenvalues of ∆i. Set ν = min(λ1/λmax, 3/4). For any prescribed δ > 0 the above
algorithm will determine that bi = 0 with probability ≤ 1− δ in S = O(nidi) space and
O(Sr) operations, where r = O(log(niδ

−1ν−1)/ν).

Proof Each iteration requires a multiplication by A, requiring O(S) operations, and
an evaluation of T requiring O(ni) = O(S) operations.

2

Next we describe the second algorithm. When bi 6= 0, then in performing the
power method on A we will (with high probability) see T (vi) approaching B. We
will pick a point to stop iterating; namely we will fix a small ε > 0 and stop iterating
when T (vr) ≥ B2(1−ε)2. After m applications of the power method we find u1, . . . , um
orthonormal with T (ui) ≥ B2(1−ε)2 for each i. We then perform one more application
of the power method (to Ã = PAP with P as in section 3), and have T (vr) ≤ (ν2+mε)2

no matter how large r is. Assuming that ν2 + mε is less than B(1− ε) (perhaps much
less than, relative to ε) we will conclude that bi = m.

Theorem 4.4 Let λ1 > 0 and λmax be the smallest non-zero and largest eigenvalues
of ∆i. Set ν = (3/4)(λ1/λmax). Let ε, δ > 0 be given. Then in O(ni(di + bi)) space and
O(Sbir) operations, where r = O(log(niδ

−1ε−1α−1)/α) with α = ν − 3biε/2, the above
algorithm will compute bi correctly with probability ≥ 1− δ under the assumption that
α ≥ 3ε/2.

We remark that we can simplify the theorem by setting ν = λ1/λmax and insisting that
ν ≥ 2biε; then r becomes O(log(niδ

−1ε−1ν−1)/ν).
Proof Say that u1, . . . , um with T (ui) ≥ B2(1 − ε)2 have been found, and we are
iterating Ã = PAP . First of all, nim storage is required to store the ui. Then
applying P requires O(mni) operations, while applying A requires O(nidi) operations.
If we apply the same number, r, iterations to find each uj, j = 1, . . . , bi, we require a
number of operations proportional to

bi∑
j=1

ni(di + j) ≤ ni(di + bi)bi,

and O(nibi) storage (in addition to the O(nidi) required to store ∆i). Next, by theo-
rem 3.6 with probability ≥ 1− (δ/2) we need r = O(log(nbiε

−1δ−1(1− µ)−1)/(1− µ))
iterations for each ui, where

µ = biε + max(µ2, |µmin|)/B ≤ biε + max(1− (λ1/B), 1/2).
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Hence
1− µ ≥ min

(
(1/2)(λ1/λmax), 1/2

)
− biε ≥ (2/3)ν − biε.

The final phase of the algorithm, i.e. applying the power method after having found
bi approximate eigenvectors, requires (by the same analysis as in theorem 4.3) r =
O(log(niδ

−1α−1)/α iterations to be able to assert that with probability ≥ 1 − δ we
have B has multiplicity ≤ bi in A.

2

Next we describe the “integralizing” procedure to rigourously verify that bi ≥ m
for some m. Say that our power method algorithm computes that bi ≥ m, meaning
that it has found orthonormal vectors u1, . . . , um with T (uj) ≥ B2(1 − ε)2. To check
that the kernel of ∆i is at least m-dimensional, we proceed as follows. By Gauss-
Jordan elimination, and by renumbering the coordinates, we can transform the {uj}
into a basis {vj} where for any 1 ≤ k ≤ m we have vj ’s k-th coordinate is 1 if j = k
and 0 if j 6= k. If the {uj} were a basis for the kernel of ∆i, then by Cramer’s rule
all coordinates of the vj ’s would be rational numbers. If each vj has an approximate
common denominator, meaning an integer Dj > 0 such that Djvj is nearly integral,
then we can let wj be the “integralized” (i.e. rounded) Djvj . The wj will still be
linearly independent; we can check ∆iwj = 0 by integer arithmetic, getting a definite
answer. If we are able to verify this, then we have a rigourous proof that bi ≥ m; of
course, our main algorithm tells us that bi ≤ m with probability ≥ 1− δ.

We we shall see in section 6, this integralizing procedure does not always work.
The problem is that the approximate common denominators may be large, requiring
extra precision in the computation. This leads us to the following question.

Question 4.5 Let w1, . . . , wm be vectors in Rn whose entries are integers between
−D and D for some integer D, and let S denote their span intersected with the unit
sphere. Let u1, . . . , um be chosen inductively with ui chosen from Si uniformly, with
Si the intersection of S with the orthogonal complement of u1, . . . , ui−1. How much
precision (and how much time and space) is required to reconstruct an integral basis
for S?

In this question we allow the reconstructed integral basis to have coefficients larger
than D in absolute value if need be.

Finally we describe an algorithm to compute other eigenvalues of ∆i; we use it in
section 6. Namely, to compute the multiplicity of λ in ∆i, we compute B as before
and set C = R − (∆i − λ)2, where R = max(λ2, ((3/2)B − λ)2). (If we perform more
iterations to find B, so that B is with high probability very close to λmx, we can
replace the 3/2 by 1.) Then the multiplicity of R in C is that of λ in ∆i; the next
largest eigenvalue of C, which controls the convergence rate and therefore speed of the
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algorithm, is just R−D2, where D is the distance of λ to the nearest other eigenvalue.
We do not analyze this algorithm here, but its analysis is similar to that of the above
algorithms.

Also, if we expect that ∆i has, in addition to λ, eigenvalues λ1, . . . , λr, then we
can multiply the initial vector, v1, in the power method by (∆i − λ1) · · · (∆i − λr)
(to eliminate the λj components of v1). This greatly sped up this algorithm for the
chessboard complexes of section 6.

5 Experiments on A4,2
k

i = ni = λmax λ1 λ1/λmax δ = 10−2 δ = 10−10

0 16 16.0000 0. 0.
1 120 16.0000 16.0000 1.0000 32 104
2 560 16.0000 12.0000 .7500 43 133
3 1796 16.0000 8.0000 .5000 62 185
4 4080 16.0000 4.0362 .2522 114 334
5 6520 16.0000 4.0362 .2522 117 337
6 7104 16.0000 1.9632 .1227 223 650
7 4962 16.0000 0. 0.
8 1984 16.0000 1.9175 .1198 213 650
9 376 14.0000 3.3316 .2379 104 337

10 16 11.0000 11.0000 1.0000 28 100

Table 1: Data for A4,2
0 .

Sometimes we are interested in just verifying that certain Betti numbers vanish. As
we mentioned in the introduction, there is a large collection of simplicial complexes for
which b0 = 1 and only one other Betti number does not vanish. In this case it suffices
to check the non-vanishing of all but one of the bi’s with i ≥ 1 to determine all the
bi’s. The data we present shows that for the complexes studied here, ν = λ1/λmax is
large enough to give a good performance for the algorithm.

We are studying the simplicial complex A4,2
k of [Fri92] which is defined as follows.

We consider all subsets of the four-dimensional Boolean cube, B4, which do not contain
more than k 2-dimensional subcubes. So these are simplicial complexes on n0 = 16
vertices.

The data presented is the following. For each i we list ni, then λmax(∆i), λ1(∆i),
and then the ratio of λ1/λmax. After that we calculate how many iterations3 are needed

3Notice that by inspecting ∆i to see if it is a multiple of the identity matrix, we don’t really need
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i = ni = λmax λ1 λ1/λmax δ = 10−2 δ = 10−10

0 16 16.0000 0. 0.
1 120 16.0000 16.0000 1.0000 32 104
2 560 16.0000 16.0000 1.0000 35 107
3 1820 16.0000 16.0000 1.0000 37 109
4 4368 16.0000 8.0000 .5000 65 189
5 7912 16.0000 3.1547 .1971 146 421
6 10560 16.0000 2.9539 .1846 157 450
7 9762 16.0000 1.5637 .09773 280 809
8 5632 16.0000 0. 0.
9 1672 16.0000 2.3843 .1490 173 529

10 208 15.0000 4.0000 .2666 91 302

Table 2: Data for A4,2
1 .

before we can be sure with probability ≥ 1 − δ that bi = 0; this number is given in
theorem 4.2. For both A4,2

0 and A4,2
1 there is only one Betti number other than b0 = 1

which does not vanish, and so we can calculate it via the Euler characteristic.
The data for A4,2

i , i = 0, 1 shows certain curious features. For example, λmax = 16
for a very large number of the ∆i, and λmax never exceeds 16. The author has no
idea why this happens, and is very curious to know if this is a property of the specific
complex, or if it reflects some general truth about combinatorial Laplacians.

We also remark that in calculating the λ1 and λmax, we kept iterating until these
values converged within double precision; this typically took a few hundred iterations,
and never took more than a few thousand.

For practical interest, we also include a short table of the time taken to compute
1000 iterations of the power method applied to B − ∆i. There we list i, ni, the sum
of the degrees of all vertices of the Laplacian, and the time per 1000 iterations. As
expected, for comparable sum of degrees, the Laplacian with ni smaller iterates faster.
The times is CPU seconds measured on a DEC 3000/400 workstation.

6 Experiments on Chessboard Complexes

For m, n positive integers, consider an m × n chessboard, and consider those subsets
of the squares such that no two squares lie on the same column or row (i.e. if rooks
were placed on the squares, no two rooks could take each other); this collection of
subsets, C(m, n), is closed under taking subsets. C(m, n) is the chessboard complex of

any iterations when it is, i.e. when λ1 = λmax.
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i = ni = deg sum time

2 120 120 .13
3 560 560 .65
4 1820 1820 2.25
5 4368 7248 7.41
6 7912 33736 25.68
7 10560 90304 57.83
8 9762 128354 74.69
9 5632 91808 50.96

10 1672 23464 11.45
11 208 2704 1.28

Table 3: CPU Seconds per 1000 iterations.

[Gar79],[BLVZ̆94], however it appears in some combinatorial geometric problems, such
as the Colored Tverberg’s Problem, as in [Z̆V92] (see also [ABFK92] for applications).
The k-connectivity of C(m, n) was a key fact in [Z̆V92] for certain values of m, n, k; in
general, k-connectivity (for k ≥ 1) is equivalent to the triviality of π0 and π1 and the
vanishing of Hi for all 1 ≤ i ≤ k. In [BLVZ̆94] the connectivity of C(m, n) was studied;
there it was proven that C(m, n) is v−2-connected for v = min(m, n, b(m+n+1)/3c).
It was conjectured that C(m, n) is not v − 1 connected, i.e. that Hv−1(C(m, n)) 6= 0.
This was proven for n ≥ 2m−1 and all m, n with m ≤ n and m ≤ 5, with the exception
of (m, n) = (4, 6), (5, 7), (5, 8). The conjecture holds if bv−1(C(m, n)) > 0.

We computed b2(C(4, 6)). It has n2 = 480, d2 = 13. We found λmax(∆2) = 16.
We took ε = 10−10 and computed b2 = 5 (and λ1 = 1). Upon integralizing we verified
that b2 ≥ 5, finding a basis of 0,±1 valued vectors in ker(∆2); of course, we know that
b2 < 6 with high probability from the algorithm, so that b2 = 5 with high probability.

We similarly computed b3(C(5, 7)) = 98 (n3 = 4200, d3 = 17) and b3(C(5, 8)) = 14
(n3 = 8400, d3 = 21). Integralizing we found a 0,±1 basis for ker(∆3) for C(5, 8), but
we failed to find an integral basis for C(5, 7). Thus we rigorously know b3 ≥ 14, and
know b3 = 14 with high probability for C(5, 8); we know b3 < 99 with high probability,
and b3 = 98 under the assumption that λ1 > 10−8, for C(5, 7).

We began to suspect that the eigenvalues of any ∆i on C(n, m) are all integers, and
we verified this for C(m, n) with m = 3 and n = 3, . . . , 7, with m = 4 and n = 4, 5, 6,
and with m = n = 5. We conjectured this suspicion until its recent proof, in [FH];
there the other calculations made in this section can be verified.
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7 Worst Case Eigenvalue Separation

In this section we give a number of arguments which indicate that λ1 and/or ν =
(3/4)λ1/λmax of ∆i, will be bounded away from zero. Most of the results are worst
case estimates, and are not very optimistic; we believe that in many applications the
true λ1 and/or ν will be much better than given here (see, for example, section 5 and
6).

A major problem which is left open is to bound λ1 and ν of ∆i for all i in terms of
the ni and di. This could be done in a worst case, restricted, or probabilistic setting.

7.1 Bounds Based on Random Graphs

Consider ∆0, which just depends on the 0- and 1-faces of the complex, which is just
a graph. It is well known that if X is a random graph on n vertices of degree d,
then λ1(∆0) = d −

√
d(2 + o(1)) with high probability in many situations (e.g. d ≥

O(log2 n) and n large or d fixed and even and n large) (see [Fri91]). It follows that
ν ≥ 1− d−1/2(2 + o(1)) for most graphs.

7.2 Bounds Based on Worst Case Graphs

We can get some bounds on ∆0 just from graph theory bounds. Indeed, from [Fri94],
it follows that for a connected graph on n nodes we have

λ1(∆) ≥ 2− 2 cos(π/n) = π2/n2 + O(n−4)

where ∆ is the graph Laplacian. Since ∆0 is just a graph Laplacian, it follows that
the same bound holds for ∆0 (and n = n0). This also gives ν proportional to 1/n2; we
don’t know if this is the worst possible ν for a graph on n vertices.

Sometimes a similar bound will hold of ∆d for a d-dimensional complex (meaning
that d is the top dimension of a face). Recall that ∆d depends on an ordering of each
d-face. We say that two faces, α, β, of size d intersect if |α∩β| = d (i.e. ∆d is non-zero
at the α, β entry), and that they intersect negatively if α and β have differing signs in
the α ∩ β row of ∂d (i.e. ∆d is −1 at the α, β entry).

Definition 7.1 We say that a d-dimensional simplicial complex is orientable if there
is an ordering of the d-faces such that any two intersecting d-faces intersect negatively.

In particular, a complex based on an orientable manifold is orientable. Also, in an
orientable complex, each (d− 1)-face is incident on at most two d-faces.

For a d-dimensional orientable complex we clearly have that ∆d is a graph Lapla-
cian, where the vertices are the d-faces and the vertices the (d−1)-faces. To summarize
we have:
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Theorem 7.2 We have that λ1(∆0) ≥ 2− 2 cos(π/n0); for an orientable complex we
have λ1(∆d) ≥ 2− 2 cos(π/nd).

Notice that for d = 2, λ1(∆1) is bounded below by the min of that of λ1(∆0) and
λ1(∆2). It follows that:

Corollary 7.3 For an orientable complex of dimension d ≤ 2 we have that for all i
we have λ1(∆i) ≥ 2− 2 cos(π/ñ), where ñ = max(n0, nd).

7.3 A General Conjecture

Although we can’t in general bound λ(∆i) for all i when d ≥ 3, we can give some
arguments which suggest how λ1(∆i) changes if we take a fixed simplicial complex and
subdivide it more and more finely.

For one thing, it is known (see [Cha84]) that for continuous Laplacians acting on
the i-forms of d-dimensional manifolds, we have that the λj are infinite and grow like
λn ≈ cn2/d. It is known that certain types of refinements of combinatorial Laplacians
have limits whose eigenvalues converge to those of the continuous Laplacian in a certain
sense (see [DP76]). So it makes sense to conjecture that for regular types of refinements
(i.e. those where the aspect ratio of sides of a simplex remains bounded with respect
to some fixed, smooth metric) we have λn ≈ cn2/d.

Conjecture 7.4 For regular refinements of a given simplicial complex of dimension
d we have ν = (3/4)λ1/λmax = Ω(n

−2/d
i ) as ni → ∞, i.e. as the refinements get finer

and finer.
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