Recognizing more unstatisfiable etc.

Joel Friedman*
Department of Mathematics
University of British Colubmia
Vancouver, BC V6T 1Z2
CANADA
jf@math.ubc.ca

January 11, 2001

1 Spectral Considerations

In this section we prove a general relationship between the size of an independent set in a graph and the eigenvalues of its adjacency matrix. Then we prove that the graphs G_{F} and H_{F} satisfy certain eigenvalue bounds with high probability. These two results show that with high probability the conclusion of Theorem 1 does not hold.

Let $G=(V, E)$ be an undirected graph, and $A=A_{G}$ the adjacency matrix of G. Let A_{G} 's eigenvalues be ordered $\lambda_{1} \geq \cdots \geq \lambda_{n}$, with $n=|V|$. We say that G is ν-separated if $\left|\lambda_{i}\right| \leq \nu \lambda_{1}$ for $i>1$. We say that G is ϵ-balanced for some $\epsilon>0$ if there is a real d such that the degree of each vertex is between $d(1-\epsilon)$ and $d(1+\epsilon)$.

Theorem 1.1 If G is ν-separated and ϵ-balanced, then G contains no independent set of size $\geq(n / 5)+n f(\nu, \epsilon)$ where $f(\nu, \epsilon)$ tends to 0 as ν, ϵ tend to 0.

[^0]We remark that this theorem can probably be greatly improved upon (see below). But this weak theorem does preclude independent sets of size $n / 4$ for small ν, ϵ, and that is all we need here.
Proof Let u be a non-negative first eigenvector of A_{G} of unit length. Then

$$
A_{G}=\lambda_{1} u u^{\mathrm{T}}+\mathcal{E},
$$

where \mathcal{E} is a matrix of operator norm $\max _{i>1}\left|\lambda_{i}\right|$. Let S be an independent subset of vertices of G, and let $T=V \backslash S$. Let χ_{S}, χ_{T} be the characteristic functions of S, T respectively (i.e. taking the value 1 on the set and 0 outside of the set). Then

$$
\begin{gathered}
d(1-\epsilon)|S| \leq \mid \text { edges leaving } S \mid=\left(A_{G} \chi_{S}, \chi_{T}\right)=\lambda_{1}\left(u^{\mathrm{T}} \chi_{S}\right)\left(u^{\mathrm{T}} \chi_{T}\right)+\chi_{S}^{\mathrm{T}} \mathcal{E} \chi_{T} \\
\leq \lambda_{1}\left(u^{\mathrm{T}} \chi_{S}\right)\left(u^{\mathrm{T}} \chi_{T}\right)+\left(\max _{i>1}\left|\lambda_{i}\right|\right) \sqrt{|S||T|}
\end{gathered}
$$

Let α, β be the average values of u on S, T respectively. Since u is a unit vector, Cauchy-Schwarz implies that

$$
\alpha^{2}|S|+\beta^{2}|T| \leq\|u\|^{2}=1
$$

and hence, again by Cauchy-Schwarz

$$
2 \alpha|S|^{1 / 2} \beta|T|^{1 / 2} \leq \alpha^{2}|S|+\beta^{2}|T| \leq 1
$$

(the weakness of this theorem undoubtedly comes from this pessimistic first inequality, which is only close to the truth when $\alpha^{2}|S|$ is close to $\left.\beta^{2}|T|\right)$. It follows that

$$
\left(u^{\mathrm{T}} \chi_{S}\right)\left(u^{\mathrm{T}} \chi_{T}\right)=\alpha|S| \beta|T| \leq \sqrt{|S||T|} / 2
$$

Since λ_{1} is bounded above and below by the max and min degrees, we conclude

$$
d(1+\epsilon)|S| \leq d(1-\epsilon) \sqrt{|S||T|} / 2+\nu d(1+\epsilon) \sqrt{|S||T|} .
$$

Setting $\theta=|S| / n$ we conclude that

$$
\theta \leq(1 / 2)(1+O(\epsilon)+O(\nu)) \sqrt{\theta(1-\theta)}
$$

for ϵ, ν small, and squaring both sides and dividing by θ we get

$$
\theta \leq(1 / 4)(1+O(\epsilon)+O(\nu))(1-\theta)
$$

and the theorem follows.

We now turn to eigenvalue estimates for the random graphs described in section 1. We shall estimate the lower eigenvalues of G_{F} by the trace method. For two vertices $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ of G_{F}, and for a variable z, let

$$
\left(a_{1}, b_{1}\right) \xrightarrow{(z, 1)}\left(a_{2}, b_{2}\right)
$$

be 1 or 0 according to whether or not both $a_{1} \vee a_{2} \vee z$ and $b_{1} \vee b_{2} \vee \neg z$ are clauses in F. Similarly, let

$$
\left(a_{1}, b_{1}\right) \xrightarrow{(z,-1)}\left(a_{2}, b_{2}\right)=\left(a_{2}, b_{2}\right) \xrightarrow{(z, 1)}\left(a_{1}, b_{1}\right) .
$$

So the number of edges from $\left(a_{1}, b_{1}\right)$ to $\left(a_{2}, b_{2}\right)$ is the number of pairs (z, e) with z a variable and $d \in\{1,-1\}$ for which

$$
\left(a_{1}, b_{1}\right) \xrightarrow{(z, e)}\left(a_{2}, b_{2}\right)=1 .
$$

We shall also say that such an edge has "colour" z.
We now describe the trace method. We fix a positive even integer, k. For vectors of variables, $\vec{a}=\left(a_{0}, \ldots, a_{k}\right), \vec{b}=\left(b_{0}, \ldots, b_{k}\right), \vec{z}=\left(z_{1}, \ldots, z_{k}\right)$, and a vector $\vec{e}=\left(e_{1}, \ldots, e_{k}\right)$ with each $e_{i} \in\{1,-1\}$, we set

$$
\operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e})=\prod_{i=0}^{k-1}\left(a_{i-1}, b_{i-1}\right) \xrightarrow{\left(z_{i}, e_{i}\right)}\left(a_{i}, b_{i}\right) .
$$

Clearly

$$
\sum \lambda_{i}^{k}=\operatorname{Trace}\left(A^{k}\right)=\sum_{\substack{\vec{a}, \vec{b}, \vec{z}, \vec{e} \\ a_{0}=a_{k}, b_{0}=b_{k}}} \operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e})
$$

The "pure" trace method would estimate the expected value of the above trace. However, we shall need to exclude certain rare and pathological graphs before estimating the trace.

For a graph, G_{F}, let $d_{\text {max }}$ and $d_{\text {min }}$ be the maximum and minimum degrees of G_{F}. Let $c_{\max }$ be the maximum number of edges of any one colour incident upon an vertex.

Lemma 1.2 For any constant $r>0$ there is a constant M such that for a random G_{F} we have $c_{\max } \leq M$ with probability $1-O\left(n^{-r}\right)$.

Proof Given a z, the edges incident with a given (a, b) of colour z is the the sum of two products, the first product being the number of variables x with $a \vee x \vee z$ a clause times the number of variables y with $b \vee y \vee \neg z$, and the second product similar. The number of such x 's as above, with a and z fixed, is the number of successes of n Bernouli trials with probability $n^{-1-\gamma}$. For $t \geq 1, t$ successes will occur with probability at most
$(n-t+1)\binom{n}{t}\left(n^{-1-\gamma}\right)^{t}\left(1-n^{-1-\gamma}\right)^{n-t} \leq n\binom{n}{t} n^{t(-1-\gamma)} \leq n(n e / t)^{t} n^{t(-1-\gamma)}$.
Therefore the number of such success is $\geq M_{1}$ with probability $\leq O\left(n^{-r-2}\right)$, for some constant M_{1}. The so the count on the x variables is $\geq M_{1}$ for at least one a and one z with probability $\leq O\left(n^{-r}\right)$. We conclude that $c_{\max } \leq M$ with $M=2 M_{1}^{2}$ with probability $1-O\left(n^{-r}\right)$.

Now let $\epsilon, M>0$ be fixed (as well as an even positive k), and let \mathcal{E} be the event that G_{F} has $d_{\max } \leq 2 n^{1-2 \gamma}(1+\epsilon), d_{\min } \geq 2 n^{1-2 \gamma}(1-\epsilon)$, and $c_{\max } \leq M$. Let $\chi_{\mathcal{E}}$ be the characteristic function of \mathcal{E}, i.e. 1 or 0 according to whether or not \mathcal{E} holds. Our main theorem on the trace is the following.

Theorem 1.3 For all $k \geq 2$ we have that

$$
\mathrm{E}\left(\chi_{\mathcal{E}} \operatorname{Trace}\left(A^{k}\right)\right) \leq\left(2 n^{1-2 \gamma}\right)^{k}+f(\epsilon, M, k) n^{k(1-2 \gamma)} n^{-\min (1,(k / 2)(1-2 \gamma))}
$$

where E denotes expected value and where f is some function.
Proof Let $\vec{a}, \vec{b}, \vec{z}, \vec{e}$ be as before with $a_{0}=a_{k}$ and $b_{0}=b_{k}$. Any \vec{z} falls into precisely one of the three following cases: (1) distinct, meaning that all z_{i} are distinct, (2) quasi-distinct, meaning that at least one z_{i} is distinct, but some z_{i} 's are repeated, or (3) duplicated, meaning that no z_{i} 's are distinct. If \vec{z} is distinct, then clearly

$$
\mathrm{E}(\operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e}))=n^{(-1-\gamma) 2 k}
$$

Hence

$$
\sum_{\substack{\vec{a}, \vec{b}, \vec{z}, \vec{e} \\ a_{0}=a_{k}, b_{0}=b_{k} \\ \vec{z} \text { distinct }}} \operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e}) \leq n^{3 k} 2^{k} n^{(-1-\gamma) 2 k}=\left(2 n^{1-2 \gamma}\right)^{k}
$$

Next consider a quasi-distinct \vec{z}. Consider the case where z_{k} is distinct. Fix z_{k}, a_{0}, and b_{0}. Since z_{k} is distinct, the random variable

$$
\left(a_{i-1}, b_{i-1}\right) \xrightarrow{\left(z_{i}, e_{i}\right)}\left(a_{i}, b_{i}\right)
$$

with $i=k$ is 1 with probability $n^{-2-2 \gamma}$ independently of all the other random variables with $i \neq k$. Now we let all edges in G_{F} of colour not z_{k} be determined, and view the edges coloured z_{k} as (still undetermined) random variables. We have

$$
\sum_{\substack{\vec{a}, \vec{b}, \vec{z}, \vec{e} \\ \text { and } \\ \text { rith }=b_{k}, z_{k} \\ \text { ifixed } \\ z_{k} \text { distinct }}} \mathrm{E}(\operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e})) \leq \mathcal{N}\left(a_{0}, b_{0}, z_{k}\right) n^{-2-2 \gamma}
$$

where $\mathcal{N}\left(a_{0}, b_{0}, z_{k}\right)$ denotes the number of walks in G_{F} of length $k-1$ that do not involve edges of colour z_{k} but that do have at least one repeated colour. We conclude that

$$
\sum \mathrm{E}\left(\chi_{\mathcal{E}} \operatorname{walk}(\vec{a}, \vec{b}, \vec{z}, \vec{e})\right)
$$

summing over $\vec{a}, \vec{b}, \vec{z}, \vec{e}$ is bounded by $\mathcal{N}_{\text {max }} n^{-2-2 \gamma}$, where $\mathcal{N}_{\text {max }}$ is the maximum value of $\mathcal{N}\left(a_{0}, b_{0}, z_{k}\right)$ over the event \mathcal{E}. To estimate $\mathcal{N}_{\text {max }}$ we note that a vertex will have degree at most $d_{\max }$. The repeated colour occurs for the first two times in $\leq\binom{ k}{2}$ positions (in the order z_{1}, \ldots, z_{k}), and once these positions are fixed then the second time the colour occurs there are at most $c_{\text {max }}$ choices for possible edges. It follows that

$$
\mathcal{N}_{\max } \leq\left(d_{\max }\right)^{k-2} c_{\max } \leq\binom{ k}{2}\left(2(1+\epsilon) n^{1-2 \gamma}\right)^{k-2} M n^{-2-2 \gamma}
$$

Summing over $\left(a_{0}, b_{0}\right)$ we conclude

$$
\sum_{\substack{\vec{a}, \vec{b}, \overrightarrow{,}, \vec{e} \\ a_{0}=a_{k}, b_{0}=b_{k} \\ \vec{z} \text { with } \text { fixed } z_{k} \text { distinct }}} \mathrm{E}\left(\chi_{\mathcal{E}} \text { walk }(\vec{a}, \vec{b}, \vec{z}, \vec{e})\right) \leq n^{2}\binom{k}{2}\left(2(1+\epsilon) n^{1-2 \gamma}\right)^{k-2} M n^{-2-2 \gamma}
$$

For z_{k} not distinct but \vec{z} quasi-distinct, consider that $\vec{a}, \vec{b}, \vec{z}, \vec{e}$ represent the existence of a closed walk. So the desired walk exists iff any cyclic rotation
of $\vec{a}, \vec{b}, \vec{z}, \vec{e}$ has the same. So one of k cyclic rotations rotates \vec{z} to have z_{k} distinct, and z_{k} is chosen from one of n variables, and hence

$$
\sum_{\substack{\vec{a}, \vec{b}, \vec{z}, \vec{e} \\ a_{0} a_{k}, b_{0}=b_{k} \\ \text { quasi-distinct }}} \mathrm{E}\left(\chi_{\mathcal{E}} \text { walk }(\vec{a}, \vec{b}, \vec{z}, \vec{e})\right) \leq n k n^{2}\binom{k}{2}\left(2(1+\epsilon) n^{1-2 \gamma}\right)^{k-2} M n^{-2-2 \gamma}
$$

$$
=f_{1}(k, \epsilon, M) n^{3+(1-2 \gamma)(k-2)-2-2 \gamma}=f_{1}(k, \epsilon, M) n^{(1-2 \gamma) k-1} .
$$

Now we turn to duplicated \vec{z}. Our argument is very similar (and a bit easier) than it is in the quasi-distinct case. A duplicated \vec{z} has $\leq k / 2$ colours occuring for the first time somewhere in z_{1}, \ldots, z_{k}, and $\geq k / 2$ colours that are repeats. It follows that the total number of loops of length k involving duplicated \vec{z} is therefore

$$
\leq f_{2}(k) d_{\max }^{k / 2} c_{\max }^{k} \leq f_{3}(k, \epsilon, M) n^{(1-2 \gamma) k / 2}
$$

Summing over our three estimates for the three types of \vec{z} yields the theorem.

Corollary 1.4 For any $\epsilon, \nu>0$ the probability that G_{F} is ν-separated and ϵ-balanced is at least $f(\epsilon, \nu, n)$, where for fixed ϵ, ν and $n \rightarrow \infty$ we have

$$
f(\epsilon, \nu, n)=1-\left(1-(1-\epsilon)^{k}\right)(1+\epsilon)^{k} \nu^{-k}+o(1) .
$$

Proof For fixed $\epsilon>0$, fixed positive even k, and a fixed sufficiently large M we have that the event \mathcal{E} occurs with probability $1-o(1)$, according to Corollary 8. If ρ denotes the maximum of $\left|\lambda_{i}\right|$ for $i>1$, we have (using the fact that $\left.\lambda_{1} \geq 2 n^{1-2 \gamma}(1-\epsilon)\right)$

$$
\mathrm{E}\left(\chi_{\mathcal{E}} \rho^{k}\right) \leq \mathrm{E}\left(\chi_{\mathcal{E}}\left(\operatorname{Trace}\left(A^{k}\right)-\lambda_{1}^{k}\right)\right) \leq\left(2 n^{1-2 \gamma}\right)^{k}\left(1-(1-\epsilon)^{k}+o(1)\right)
$$

It follows that the probability that \mathcal{E} occurs and $\rho \geq\left(2 n^{1-2 \gamma}\right) s$ occurs is at most $g(\epsilon, s, n)$, where

$$
g(\epsilon, s, n)=1-\left(1-(1-\epsilon)^{k}\right) s^{-k}+o(1) .
$$

Now choose $s=\nu /(1-\epsilon)$. Then G_{F} will be ν-separated if $\rho \leq\left(2 n^{1-2 \gamma}\right) s$

Corollary 1.5 We have that a random G_{F} has an independent set of size $\geq n^{2} / 4$ with probability $\leq o(1)$.

Proof Fix a $\nu>0$ sufficiently small so that in Theorem 1.1 for small $\epsilon>0$ we have $f(\nu, \epsilon)<1 / 20$. Then for any small ϵ the above corollary (along with Theorem 1.1) implies that an independent set occurs with size $n^{2} / 4$ with probability

$$
\leq(1-\epsilon)^{k}(1+\epsilon)^{k} \nu^{-k}+o(1)
$$

Hence for any ϵ there is an n_{0} such that this probability is less than $h(\epsilon)$ for all $n \geq n_{0}=n_{0}(\epsilon)$, where $h(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. In other words, for any $\delta>0$ there is an $\epsilon>0$ with $h(\epsilon)<\delta$, and hence an idependent set of size $n^{2} / 4$ occurs with probability $\leq \delta$ for $n \geq n_{0}(\epsilon)$. This is just to say that the aforementioned probability is $\leq o(1)$.

[^0]: *Research supported in part by an NSERC grant.

