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1 Spectral Considerations

In this section we prove a general relationship between the size of an inde-
pendent set in a graph and the eigenvalues of its adjacency matrix. Then we
prove that the graphs GF and HF satisfy certain eigenvalue bounds with high
probability. These two results show that with high probability the conclusion
of Theorem 1 does not hold.

Let G = (V,E) be an undirected graph, and A = AG the adjacency
matrix of G. Let AG’s eigenvalues be ordered λ1 ≥ · · · ≥ λn, with n = |V |.
We say that G is ν-separated if |λi| ≤ νλ1 for i > 1. We say that G is
ε-balanced for some ε > 0 if there is a real d such that the degree of each
vertex is between d(1− ε) and d(1 + ε).

Theorem 1.1 If G is ν-separated and ε-balanced, then G contains no inde-
pendent set of size ≥ (n/5) + nf(ν, ε) where f(ν, ε) tends to 0 as ν, ε tend to
0.
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We remark that this theorem can probably be greatly improved upon (see
below). But this weak theorem does preclude independent sets of size n/4
for small ν, ε, and that is all we need here.
Proof Let u be a non-negative first eigenvector of AG of unit length. Then

AG = λ1uu
T + E ,

where E is a matrix of operator norm maxi>1 |λi|. Let S be an independent
subset of vertices of G, and let T = V \ S. Let χS, χT be the characteristic
functions of S, T respectively (i.e. taking the value 1 on the set and 0 outside
of the set). Then

d(1− ε)|S| ≤
∣∣∣ edges leaving S

∣∣∣ = (AGχS, χT ) = λ1(u
TχS)(u

TχT ) + χT
SEχT

≤ λ1(u
TχS)(u

TχT ) +
(
max
i>1
|λi|
)√
|S| |T |

Let α, β be the average values of u on S, T respectively. Since u is a unit
vector, Cauchy-Schwarz implies that

α2|S|+ β2|T | ≤ ‖u‖2 = 1,

and hence, again by Cauchy-Schwarz

2α|S|1/2β|T |1/2 ≤ α2|S|+ β2|T | ≤ 1

(the weakness of this theorem undoubtedly comes from this pessimistic first
inequality, which is only close to the truth when α2|S| is close to β2|T |). It
follows that

(uTχS)(u
TχT ) = α|S|β|T | ≤

√
|S| |T |

/
2.

Since λ1 is bounded above and below by the max and min degrees, we con-
clude

d(1 + ε)|S| ≤ d(1− ε)
√
|S| |T |

/
2 + νd(1 + ε)

√
|S| |T |.

Setting θ = |S|/n we conclude that

θ ≤ (1/2)
(
1 +O(ε) +O(ν)

)√
θ(1− θ)

for ε, ν small, and squaring both sides and dividing by θ we get

θ ≤ (1/4)
(
1 +O(ε) +O(ν)

)
(1− θ),

and the theorem follows.
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We now turn to eigenvalue estimates for the random graphs described in
section 1. We shall estimate the lower eigenvalues of GF by the trace method.
For two vertices (a1, b1) and (a2, b2) of GF , and for a variable z, let

(a1, b1)
(z,1)−→ (a2, b2)

be 1 or 0 according to whether or not both a1 ∨ a2 ∨ z and b1 ∨ b2 ∨ ¬z are
clauses in F . Similarly, let

(a1, b1)
(z,−1)−→ (a2, b2) = (a2, b2)

(z,1)−→ (a1, b1).

So the number of edges from (a1, b1) to (a2, b2) is the number of pairs (z, e)
with z a variable and d ∈ {1,−1} for which

(a1, b1)
(z,e)−→ (a2, b2) = 1.

We shall also say that such an edge has “colour” z.
We now describe the trace method. We fix a positive even integer, k. For

vectors of variables, ~a = (a0, . . . , ak), ~b = (b0, . . . , bk), ~z = (z1, . . . , zk), and
a vector ~e = (e1, . . . , ek) with each ei ∈ {1,−1}, we set

walk(~a,~b, ~z, ~e) =
k−1∏
i=0

(ai−1, bi−1)
(zi,ei)−→ (ai, bi).

Clearly ∑
λki = Trace(Ak) =

∑
~a,~b,~z,~e

a0=ak,b0=bk

walk(~a,~b, ~z, ~e).

The “pure” trace method would estimate the expected value of the above
trace. However, we shall need to exclude certain rare and pathological graphs
before estimating the trace.

For a graph, GF , let dmax and dmin be the maximum and minimum degrees
of GF . Let cmax be the maximum number of edges of any one colour incident
upon an vertex.

Lemma 1.2 For any constant r > 0 there is a constant M such that for a
random GF we have cmax ≤M with probability 1−O(n−r).
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Proof Given a z, the edges incident with a given (a, b) of colour z is the
the sum of two products, the first product being the number of variables x
with a ∨ x ∨ z a clause times the number of variables y with b ∨ y ∨ ¬z, and
the second product similar. The number of such x’s as above, with a and z
fixed, is the number of successes of n Bernouli trials with probability n−1−γ .
For t ≥ 1, t successes will occur with probability at most

(n− t+ 1)

(
n

t

)(
n−1−γ

)t(
1− n−1−γ

)n−t
≤ n

(
n

t

)
nt(−1−γ) ≤ n(ne/t)tnt(−1−γ).

Therefore the number of such success is ≥M1 with probability ≤ O(n−r−2),
for some constant M1. The so the count on the x variables is ≥ M1 for at
least one a and one z with probability ≤ O(n−r). We conclude that cmax ≤M
with M = 2M2

1 with probability 1− O(n−r).

2

Now let ε,M > 0 be fixed (as well as an even positive k), and let E be the
event that GF has dmax ≤ 2n1−2γ(1+ ε), dmin ≥ 2n1−2γ(1−ε), and cmax ≤M .
Let χE be the characteristic function of E , i.e. 1 or 0 according to whether
or not E holds. Our main theorem on the trace is the following.

Theorem 1.3 For all k ≥ 2 we have that

E
(
χETrace(Ak)

)
≤
(
2n1−2γ

)k
+ f(ε,M, k)nk(1−2γ)n−min(1,(k/2)(1−2γ)),

where E denotes expected value and where f is some function.

Proof Let ~a,~b, ~z, ~e be as before with a0 = ak and b0 = bk. Any ~z falls into
precisely one of the three following cases: (1) distinct, meaning that all zi
are distinct, (2) quasi-distinct, meaning that at least one zi is distinct, but
some zi’s are repeated, or (3) duplicated, meaning that no zi’s are distinct.
If ~z is distinct, then clearly

E
(
walk(~a,~b, ~z, ~e)

)
= n(−1−γ)2k .

Hence ∑
~a,~b,~z,~e

a0=ak,b0=bk
~z distinct

walk(~a,~b, ~z, ~e) ≤ n3k2kn(−1−γ)2k =
(
2n1−2γ

)k
.
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Next consider a quasi-distinct ~z. Consider the case where zk is distinct.
Fix zk, a0, and b0. Since zk is distinct, the random variable

(ai−1, bi−1)
(zi,ei)−→ (ai, bi)

with i = k is 1 with probability n−2−2γ independently of all the other ran-
dom variables with i 6= k. Now we let all edges in GF of colour not zk be
determined, and view the edges coloured zk as (still undetermined) random
variables. We have∑

~a,~b,~z,~e
a0=ak ,b0=bk,zk fixed
~z with zk distinct

E
(
walk(~a,~b, ~z, ~e)

)
≤ N (a0, b0, zk)n

−2−2γ ,

where N (a0, b0, zk) denotes the number of walks in GF of length k−1 that do
not involve edges of colour zk but that do have at least one repeated colour.
We conclude that ∑

E
(
χEwalk(~a,~b, ~z, ~e)

)
summing over ~a,~b, ~z, ~e is bounded by Nmaxn

−2−2γ , where Nmax is the maxi-
mum value of N (a0, b0, zk) over the event E . To estimate Nmax we note that
a vertex will have degree at most dmax. The repeated colour occurs for the
first two times in ≤

(
k
2

)
positions (in the order z1, . . . , zk), and once these

positions are fixed then the second time the colour occurs there are at most
cmax choices for possible edges. It follows that

Nmax ≤ (dmax)
k−2cmax ≤

(
k

2

)(
2(1 + ε)n1−2γ

)k−2

Mn−2−2γ .

Summing over (a0, b0) we conclude∑
~a,~b,~z,~e

a0=ak ,b0=bk
zk fixed

~z with zk distinct

E
(
χEwalk(~a,~b, ~z, ~e)

)
≤ n2

(
k

2

)(
2(1 + ε)n1−2γ

)k−2

Mn−2−2γ .

For zk not distinct but ~z quasi-distinct, consider that ~a,~b, ~z, ~e represent
the existence of a closed walk. So the desired walk exists iff any cyclic rotation
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of ~a,~b, ~z, ~e has the same. So one of k cyclic rotations rotates ~z to have zk
distinct, and zk is chosen from one of n variables, and hence∑

~a,~b,~z,~e
a0=ak,b0=bk

~z quasi−distinct

E
(
χEwalk(~a,~b, ~z, ~e)

)
≤ nkn2

(
k

2

)(
2(1 + ε)n1−2γ

)k−2

Mn−2−2γ

= f1(k, ε,M)n3+(1−2γ)(k−2)−2−2γ = f1(k, ε,M)n(1−2γ)k−1.

Now we turn to duplicated ~z. Our argument is very similar (and a bit
easier) than it is in the quasi-distinct case. A duplicated ~z has ≤ k/2 colours
occuring for the first time somewhere in z1, . . . , zk, and ≥ k/2 colours that
are repeats. It follows that the total number of loops of length k involving
duplicated ~z is therefore

≤ f2(k)d
k/2
maxc

k
max ≤ f3(k, ε,M)n(1−2γ)k/2.

Summing over our three estimates for the three types of ~z yields the
theorem.

2

Corollary 1.4 For any ε, ν > 0 the probability that GF is ν-separated and
ε-balanced is at least f(ε, ν, n), where for fixed ε, ν and n→∞ we have

f(ε, ν, n) = 1−
(
1− (1− ε)k

)
(1 + ε)kν−k + o(1).

Proof For fixed ε > 0, fixed positive even k, and a fixed sufficiently large
M we have that the event E occurs with probability 1 − o(1), according to
Corollary 8. If ρ denotes the maximum of |λi| for i > 1, we have (using the
fact that λ1 ≥ 2n1−2γ(1− ε))

E
(
χEρ

k
)
≤ E

(
χE
(
Trace(Ak)− λk1

))
≤
(
2n1−2γ

)k(
1− (1− ε)k + o(1)

)
.

It follows that the probability that E occurs and ρ ≥ (2n1−2γ)s occurs is at
most g(ε, s, n), where

g(ε, s, n) = 1−
(
1− (1− ε)k

)
s−k + o(1).

Now choose s = ν/(1− ε). Then GF will be ν-separated if ρ ≤ (2n1−2γ)s
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Corollary 1.5 We have that a random GF has an independent set of size
≥ n2/4 with probability ≤ o(1).

Proof Fix a ν > 0 sufficiently small so that in Theorem 1.1 for small ε > 0
we have f(ν, ε) < 1/20. Then for any small ε the above corollary (along with
Theorem 1.1) implies that an independent set occurs with size n2/4 with
probability

≤ (1− ε)k(1 + ε)kν−k + o(1).

Hence for any ε there is an n0 such that this probability is less than h(ε)
for all n ≥ n0 = n0(ε), where h(ε) → 0 as ε → 0. In other words, for any
δ > 0 there is an ε > 0 with h(ε) < δ, and hence an idependent set of size
n2/4 occurs with probability ≤ δ for n ≥ n0(ε). This is just to say that the
aforementioned probability is ≤ o(1).
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