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Abstract

In this paper we give an explicit construction of n × n matrices over finite
fields which are somewhat rigid, in that if we change at most k entries in each
row, its rank remains at least Cn(logq k)/k, where q is the size of the field and C
is an absolute constant. Our matrices satify a somewhat stronger property, we
which explain and call “strong rigidity.” We introduce and briefly discuss strong
rigidity, because it is in a sense a simpler property and may be easier to use in
giving explicit constructions.

Recently there has been interest in giving explicit constructions of n × n matrices
which are “rigid,” in the sense that their rank is high and remains high when a few
of their coefficients are changed (see [Val77], [Gri76], [Raz], and [PSR]1). It is easy to
construct n× n matrices over infinite fields, F, such that when no more that k of the
entries of each row are altered, the rank remains at least n/k; one can take a van der
Monde matrix, for example. In this note we give an explicit construction of a matrix
which is slightly more rigid than such a construction, for finite fields, F, and k larger
than some constant (depending on the size of the field). These matrices are actually
“strongly rigid,” in a sense that we will discuss later.

∗This paper was written while on leave from Princeton, at the Hebrew University. The author
wishes to acknowledge the National Science Foundation for supporting this research in part under PYI
grant CCR–8858788, and a grant from the program of Medium and Long Term Research at Foreign
Centers of Excellence.

1Pudlak and Savitzky have shown that over the real numbers, a Hadamard matrix of dimension n
remains of rank r if no more than n2/

(
r4 log2 r

)
of its entries are changed. Razborov has improved

this to n2/
(
r3 log r

)
.
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Theorem 1 For any constant C1 > 0 there is a constant C2 > 0 such that the following
holds. Let F be a finite field of q elements. Let A be an n×n matrix such that the first
n/2 rows are the basis of a linear error-correcting code in Fn of minimum distance
≥ C1n. If B is any n× n matrix over F with at most k non-zero entries in each row,
where k ≤ n/C2, then we have

rank(A+B) ≥ n

C2k

(
logq k + logq(q − 1)

)
.

In the above theorem it is the “logq k” as opposed to the “logq(q − 1)” which is of
interest. We have included the “logq(q − 1)” to remark that when q → ∞ with fixed
n and k, the construction does not completely degenerate.

The above matrices satisfy a stronger property, which we call “strong rigidity.”
After proving this theorem we define and discuss strong rigidity, because it is somewhat
easier to work with and may be a useful point of view in constructing other explicit
examples.

We recall that there are many types of explicitly specified codes, which for any
value of q give a sequence of n’s and a code for each such n of dimension n/2 and
minimum distance C1n with C1 independent of q and n (one can take Justesen codes
or Goppa codes, see respectively [vL82] and [vdGvL88]). Thus the above theorem, for
any value of q and many of n, gives matrices rigid in the above sense.

Proof The first n/2 rows of A represent vectors v1, . . . , vn/2 which are a basis of linear
code (subspace) C ⊂ Fn of minimum distance ≥ C1n. Let b1, · · · , bn/2 be the first n/2
rows of B. If the rank of the matrix consisting of the first n/2 rows of A+B is t, then
this is just to say that

E ≡
w = (w1, . . . , wn/2) ∈ Fn/2

∣∣∣∣∣
n/2∑
i=1

wi(vi + bi) = 0


(here 0 is the origin in Fn) satisfies

dim E =
n

2
− t.

Since E is an (n/2)− t dimensional subspace of Fn/2, we can find a non-zero element
w ∈ E of weight r for any r satisfying∣∣∣Hamming ball of radius r/2 in Fn/2

∣∣∣ ≥ qt,

or more crudely, (
n/2

r/2

)
(q − 1)r/2 ≥ qt. (1)
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But for such a w we have
n/2∑
i=1

wibi ∈ C − {0},

and so such an r must satisfy rk ≥ C1n. So taking r0 = dC1n/ke − 1, equation 1
cannot hold for r = r0, that is to say that t is bounded below by

t ≥ logq

[(
n/2

r0/2

)
(q − 1)r0/2

]
≥ logq

(
n/2

r0/2

)
+
r0

2
logq(q−1) ≥ n

C2k

(
logq k+logq(q−1)

)
,

for large enough C2, also assuming k ≤ n/C2, where we have estimated

logq

(
n/2

r0/2

)
≥ logq

[(
n

2
− r0

2

)r0/2 /
(r0/2)r0/2

]
≥ n

C2k
logq k .

2

Definition 2 C ⊂ Fn is (k, t)-strongly rigid if every subspace B spanned by c = dim C
vectors b1, . . . , bc, each of weight ≤ k, has

dim(B ∩ C) ≤ dim C − t. (2)

Glancing at the proof of theorem 1 shows that matrix A is actually (k, t)-strongly rigid
with t = n logq k/(C2k). Strong rigidity is a simpler property to check, in the sense
that we do not care about the precise relations between a basis for C and of one for B.
Therefore, as in theorem 1, we hope that it may be easier to work with strong rigidity
to give explicit constructions.

To compare strong rigidity to the usual notion of rigidity, we’ll say that an n × n
matrix A is (k, t)-rigid if whenever no more than k entries in each row of A are altered,
then A’s rank remains at least t. It is easy to see (and well-known) that if A is a
“random” n × n matrix in an infinite or sufficiently large field, F, then with high
probability2 A will be (k, t)-rigid with any t ≤ n− (nk)1/2.

While we cannot assert so large a value of t for the existence of strongly rigid
matrices, we can obtain existence for a value of t which is interesting for some of the
intended applications of rigid matrices.

Theorem 3 Let k, n be integers with k ≤ n/2 and (for simplicity) n even. Then over
any finite field, F, there exists a (k, t)-strongly rigid code C ⊂ Fn of dimension n/2,
for any t with

t ≤ n

8
− 1

2
k logq

n

k
− k

4
−

logq n

4
,

where q is the size of F. The same holds for any infinite field, where in the above
equation we substitute 0 for the two occurrences of logq( ), and where we require strict
inequality. If we substitute “n/10” for the “n/8” in the above equation for t, then any
n× n matrix over F is (k, t)-strongly rigid with “high probability.”

2If F is infinite, the entries of A should be chosen from a distribution which has each field element
weighted sufficiently small.
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Proof This is, as usual, an easy counting argument (in the case of infinite fields one
counts dimensions). For any subspaces B, C of Fn with

dimB = dim C, dim(B ∩ C) ≥ dim C − t, (3)

it is easy to see that there exist v1, . . . , vt ∈ Fn and `1, . . . , `t ∈ (Fn)∗ (i.e. the dual of
Fn as an F-vector space) such that

C =
{
v ∈ sp 〈B, v1, . . . , vt〉

∣∣∣ `i(v) = 0 ∀i
}
, (4)

where sp 〈 〉 denotes the linear span. To see this, notice that equation 3 also implies

dim(B + C) ≤ dim C + t = dimB + t ;

hence we can choose vi so that

B + C = sp 〈B, v1, . . . , vt〉

and then choose `i so that equation 4 holds.
Equation 4 shows that to every code C of dimension n/2 which is not (k, t)-strongly

rigid there corresponds (at least one collection of) a B generated by n/2 vectors of
weight ≤ k and vectors vi and (dual) vectors `i as above. In the case of F finite, the
number of vectors of weight ≤ k is

≤ n(q − 1)k
(
n

k

)

(assuming k ≤ n/2), and so the total number of collections (B, {vi}, {`i}) is bounded
by

≤
[
n(q − 1)k

(
n

k

)]n/2
q2nt. (5)

On the other hand, the total number of subspaces of Fn of dimension n/2 is

(qn − 1)(qn − q) · · ·
(
qn − q(n/2)+1

)
(qn/2 − 1)(qn/2 − q) · · ·

(
qn/2 − q(n/2)−1

) ≥ ( qn − 1

qn/2 − 1

)n/2
>
(
qn/2

)n/2
.

It follows that a (k, t)-strongly rigid C of dimension n/2 exists provided that

qn
2/4 ≥

[
n(q − 1)k

(
n

k

)]n/2
q2nt,

in particular, using
(
n
k

)
≤ (n− k)k/kk,

t ≤ n

8
− 1

2
k logq

n

k
− k

4
−

logq n

4
.
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Also, if we replace the n/8 in the above by n/10, then a randomly chosen C of dimension
n/2 has probability ≤ n−n/40 of not being (k, t)-rigid.

If the field is infinite, then the dimension of the set of tuples (B, {vi}, {`i}) as an F
variety3 is

kn

2
+ 2nt.

This, of course, is the q → ∞ limit of logq of the expression in equation 5. The same
goes through for the set of all C, i.e. subspaces of dimension n/2 in Fn, meaning that
one counts its dimension as an F variety (and gets the q → ∞ limit of log q of the
previously derived expression for finite fields). Therefore we get the aforementioned
results, except that we need strict inequality in the inequality for t, and that when we
use n/10 instead of n/8, “high probability” means occurs as a subvariety of codimension
≥ bn/40c.

2

J. H̊astad has pointed out to me that the construction given in theorem 1 will,
in general, be no better that (k, t)-rigid for t proportional to n logq k/k; that is, by
starting with n/2 random vectors {bi} of small weights, choosing a random subspace
of Fn of dimension t, and choosing n/2 random vectors in this subspace, {ui}, one
gets (many) matrices A as in the theorem which are not (k, t)-rigid for appropriate t
of order n logq k/k (i.e. where A’s first n/2 rows are {bi + ui}).

The author wishes to thank A. Wigderson, J. H̊astad, and A. Razborov for helpful
discussions and comments.
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