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Abstract

We prove that for every r and d ≥ 2 there is a C such that for most choices of d
permutations π1, π2, . . . , πd of Sn, the following holds: for any two r-tuples of distinct
elements in {1, . . . , n}, there is a product of less than C logn of the πi’s which map
the first r-tuple to the second. Although we came across this problem while studying
a rather unrelated cryptographic problem, it belongs to a general context of which
random Cayley graph quotients of Sn are good expanders.



1 Introduction

Choose d ≥ 2 permutations π1, . . . , πd at random in the symmetric group Sn. Consider
now two r-tuples (u1, u2, . . . , ur) and (v1, v2, . . . , vr) of distinct elements of {1, 2, . . . , n}.
Is there always a short product of these πi’s which maps the first r-tuple to the second
one ? We prove in what follows that for almost all choices of these permutations we
only need products of length at most C log n, C being a constant depending on d and
r. When such a condition is met by d permutations π1, π2, . . . , πd, we say that the
action of these permutations is C-quickly r-transitive.

This issue has been raised by the study of the security of some low cost cryptographic
devices constructed from permutation automata (see section 3). We will exhibit a
probabilistic algorithm which reconstructs the secrete device, and which can be shown
to run in polynomial time by using the aforementioned result. This shows that such
schemes are highly insecure.

Actually the results obtained here are more general than that, and should be put in
the broader context of whether or not Cayley graphs over Sn are good expanders for
a fixed number of random generators, and/or have a small diameter and mixing time.
This is quite an important open problem, for a survey see [B&al90, Lub1, Lub2]. A
solution of this problem is of great theoretical importance, while a positive solution
would be useful for instance for generating random permutations quickly.

Here we take a first step towards a solution of the above open problem. We show
that for bounded r the random Schreier graphs Sn/Sn−r (i.e. the quotients Sn/Sn−r of
Cayley graphs over Sn) are good expanders, have a small diameter and mixing time.

More precisely we study the following random model: we choose independently d
permutations of the numbers from 1 to n, π1, π2, · · · , πd, each permutation equally
likely. We construct a directed graph, G = (V,E) with vertex set the set of r-tuples
of distinct elements of {1, . . . , n} and there is a directed edge from (u1, u2, · · · , ur) to
(v1, v2, · · · , vr) iff (v1, v2, · · · , vr) = (πi(u1), πi(u2), · · · , πi(ur)) for one of those πi’s. We
denote this probability space of random directed graphs Gn,d,r. Such graphs are d-
regular (and may have multiple edges or self-loops). We will consider the associated
space of undirected graphs G∗n,d,r too. This space is simply obtained from the first one
by changing each directed graph into an undirected one, just by replacing each directed
edge of the former graph by an undirected edge. The latter space is therefore formed
by undirected 2d-regular graphs.

It should be noted that r = 1 corresponds to the common probabilistic model of
2d-regular graphs, Gn,2d (as studied in [BS87, Fri91] for example), and that r = n is
just the common probabilistic model of random 2d-regular Cayley graphs over Sn.

1



We will show that for every fixed r and for all d ≥ 2 almost all graphs in G∗n,d,r have
a small second eigenvalue when the number of vertices becomes large, and that this
implies that almost all graphs of G∗n,d,r and of Gn,d,r are good expanders, and also have
a small diameter and mixing time.

The counting methods used by Bollobas for example to prove this kind of results for
random regular graphs (see [Bol85, Bol88, BV82]) seem to fail in our case. In fact we
prove our results by generalizing Broder-Shamir [BS87] and Friedman [Fri91] spectral
approach.

Moreover we are interested here in obtaining results about the expansion properties
of directed graphs too.

Besides being a step towards the study of random Cayley graphs over Sn:

• Those results cover the case of graphs of very small degree, which was not really
settled by previous works of A. Broder, J. Friedman, and E. Shamir (especially
the case d = 2 which is worth studying!). For instance our results show that
as soon as d ≥ 2, random 2d-regular graphs have almost always a small second
largest eigenvalue, and are therefore good certifiable expanders.

• We address here the issue of the expansion properties of directed graphs too. We
provide here tools to achieve such results, provided that the directed graphs we
are interested in have the same indegree and outdegree for each vertex. Although
most of the theory on expanders has been developed for undirected graphs— we
wish to lay emphasis on the fact that for some applications, expansion properties
of directed graphs have to be estimated, this is the case for example in [TZ93,
Zem94]— and in this article (see section 3).

Finally we mention that G∗n,d,r arises naturally from G∗n,d = G∗n,d,1, as does Gn,d,r from
Gn,d = Gn,d,1, in the following way. Given maps of graphs, G → B and H → B, there
is a fiber product (see [Fri93]) G ×B H with a natural map to B. We can similarly
form Gr = G×B · · · ×B G. If G→ B is a covering map, then Gr naturally breaks into
certain components, such as the diagonal component and the component G∧r whose
vertices are those r-tuples of G vertices which are all distinct. In our case a G ∈ G∗n,d
comes with a natural map to B = Wd, the bouquet of d self-loops (the map given via
the d permutations); G∧r would just be a random element in G∗n,d,r. Similarly a random
G ∈ Gn,d gives rise to G∧r, which is the same as a random element of Gn,d,r.
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2 The main theorem

2.1 The main theorem and its consequences

Before describing our main theorem, let us introduce some notations. Let us recall that
the adjacency matrix A = (aij) of a graph with n vertices is the n× n matrix indexed
by the vertices of the graph, such that entry aij is the number of edges between i and
j. In our case the adjacency matrix A = (aIJ) of the graph G∗ of G∗n,d,r obtained by
choosing the permutations π1, π2, · · · , πd, is defined by:

aIJ = #{l | πl(I) = J}+ #{l | πl(J) = I};

here we understand that I and J are r-tuples of distinct numbers, and each πi operates
on r-tuples in the obvious way. Let us note that each self-loop counts twice for the
corresponding (diagonal) entry of the adjacency matrix. G∗ is a 2d-regular graph,
therefore its adjacency matrix has real eigenvalues 2d = λ1 ≥ λ2 ≥ . . . ≥ λN with
N = n(n − 1) · · · (n − r + 1); let ρ = maxi≥2 |λi| = max(λ2,−λN). Our main result
asserts that ρ is almost always well separated from 2d.

Theorem 2.1 For fixed d, r we have:

E
{
ρk
}
≤
2d

(√
2d− 1

d

)1/(r+1) (
1 +O(log log n/ logn)

)k if k ≤ 2b(r + 1) log d2

2d−1

nc

Prob

ρ ≤ (1 + ε)2d

(√
2d− 1

d

)1/(r+1)
 = 1− oε(1) for every ε > 0

As corollaries we obtain that almost all graphs of G∗n,d,r are good expanders, and the
same property holds for almost all graphs of Gn,d,r. The result for directed graphs fol-
lows from an argument relating the (edge-)expansion properties of a directed graphs to
the (edge-)expansion properties of its associated undirected graph, obtained by replac-
ing each directed edge by an undirected edge, and then relating the (edge-)expansion
properties of the undirected graph to its second largest eigenvalue in absolute value.

More precisely:

Theorem 2.2 For every fixed d ≥ 2,r ≥ 1 and real ε, the probability that the graph

Gn,d,r is a c-expander tends to 1, as n tends to infinity, for c = 1−ε
2

(
1−

(√
2d−1
d

) 1
1+r

)

A c-expander is defined as follows:
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Definition 2.3 A directed graph G(V,E) with n vertices is a c-expander if, for any
subset X of vertices with size ≤ n/2 the following inequalities hold

|N+(X)| ≥ c|X| and |N−(X)| ≥ c|X|

where N+(X) (respectively N−(X)) denotes the set of vertices not in X which are
endpoints (respectively initial points) of an edge with initial point (respectively endpoint)
in X.

Note that theorem 2.2 is far from being optimal, especially for r = 1, where the
standard counting argument as used for example in [Bol88, Fri91] for undirected graphs
gives us sharper estimates on the expansion constant. It must be noted here that this
argument applies to the case d = 2 to the directed graph model with r = 1, and shows
that c > 0.16, whereas the bound of the theorem 2.2 gives only c > 0.034 (see [JST93]).
Unfortunately, this counting argument seems to fail for r > 1. Nevertheless, for most
practical applications, this theorem is actually sufficient (see for example section 3).

Remark 2.4 It should be pointed out that by using Theorem 2.1 and classical results
on Markov chains (see section 2 of [Vaz91]) imply that for every fixed d ≥ 2 and r ≥ 1,
random walks on graphs of G∗n,d,r are rapidly mixing for almost all choices of such graphs,
and that the mixing time of such random walks is not more than O(logn) almost surely.
The same result holds for the directed graph model. This is a consequence of a result
obtained by Mihail in [Mih89] (this result is recalled in Theorem 1 in [Vaz91] too) and
of Theorem 2.2.

2.2 Proof of the main theorem

In this section we prove theorem 2.1. Throughout this section we view r as fixed. We
also use the following notation.

Notation: Let N = n(n − 1) · · · (n − r + 1) be the number of vertices of the graphs
G∗n,d,r or Gn,d,r we consider here. We note Π the alphabet {π1, π

−1
1 , π2, π

−1
2 , · · · , πd, π−1

d },
where the πi’s are permutations in Sn.

We begin by describing the general approach, which follows essentially the approach
initiated by Broder and Shamir in [BS87].

The idea of the proof is to get a rather tight upper bound on E
{
ρ2k
}

for rather
large values of k. This is obtained by upper bounding this quantity by the expectation
of the number of closed walks of length 2k minus (2d)2k, when we choose a random
graph from G∗n,d,r.
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This is justified by what follows: if we call A = (aij) the adjacency matrix of a
random graph of G∗n,d,r, then an entry bij of A2k represents the number of walks on the
graph of length 2k from i to j. Therefore

Number of closed walks of length 2k = Tr(A2k) =
N∑
i=1

λ2k
i ≥ (2d)2k + ρ2k

Let us note that the expectation E
{
i

2k→ i
}

of the number of walks starting from
a vertex i and ending at the same vertex, can be seen as the probability of the fol-
lowing event. We first choose a random word w = w1w2 · · ·w2k in Π2k (all the (2d)2k

possible words are chosen with the same probability 1
(2d)2k ), and then we assign the

letters πi a permutation of Sn chosen uniformly at random. We have E
{
i

2k→ i
}

=

(2d)2kProb {w1w2 · · ·w2k(i) = i}.

So for each word w of length 2k over the alphabet Π, and for each vertex v of
the graph G∗n,d,r, let P (w, v) denote the probability that when π1, . . . , πd are assigned
permutations at random, the walk determined by w starting in v ends in v. Clearly
P (w, v) = P (w) is independent of v. Hence we have

E
{
ρ2k
}
≤

(
N∑
i

E
{
i

2k→ i
})
− (2d)2k

≤
( ∑
w∈Π2k,1≤i≤N

P (w, i)

)
− (2d)2k

≤ N

( ∑
w∈Π2k

P (w)

)
− (2d)2k

≤ N
∑

w∈Π2k

(
P (w)− 1/N

)
(1)

Our task is reduced now to estimate the quantity P (w)− 1
N

. First we will classify
the words w which give us the same probability to close the walk.

We say that a word, w ∈ Π∗ is irreducible if w contains no consecutive occurrence
of π and π−1 for any π ∈ Π. For each word, w ∈ Π2k, we obtain a unique irreducible
word, w′, by cancelling all consecutive occurrences of π and π−1 in w; we say that w
reduces to w′. In this case we clearly have P (w) = P (w′). So to estimate P (w) it
suffices to do so when w is irreducible.

Similarly, if w = w1 . . . w2k with wi ∈ Π, then if w1 = w−1
2k we have that P (w) =

P (w′) with w′ = w2 . . . w2k−1. So we say that w = w1 . . . w2k is strongly irreducible if w
is irreducible and w1 6= w−1

2k . Again, repeatedly cancelling first and last letters of w if
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they are inverses (and of consecutive π and π−1 occurrences) gives us a unique strongly
irreducible word, w′, for which P (w) = P (w′). We say that w strongly reduces to w′,
and it suffices to estimate P (w) when w is strongly irreducible.

We say that w ∈ Π∗ is periodic if it is of the form um for some u ∈ Π∗ and m ≥ 2.
Our main lemma used to estimate P (w) is the following:

Lemma 2.5 Let w be a strongly irreducible word of length 2s with s > 1 such that w
is not periodic. Then

P (w) =
1

nr
+O

(
s2r+2

nr+1

)
.

This lemma will be proved in appendix A. We finish the proof of the theorem assuming
this lemma.

Let k be fixed. Let R be the set of words in Π2k which strongly reduce to a word
which is empty or periodic, and let

p2k = |R|/|Π2k| = |R|/(2d)2k

be the probability that a random word in Π2k belongs to R. Clearly we have∑
w∈Π2k

(
P (w)− 1/N

)
/(2d)2k ≤ p2k max

w∈R

(
P (w)− 1/N

)
+ (1− p2k) max

w/∈R

(
P (w)− 1/N

)

≤ p2k + max
w/∈R

(
P (w)− 1/N

)
. (2)

In lemma 2.5 we estimated the right-hand-side of the above expression; the left-hand-
side can be estimated by the following lemma.

Lemma 2.6 We have

p2k ≤ (k + 1)

(
2d− 1

d2

)k

The proof of this statement is in appendix B.

Applying lemmas 2.5 and 2.6 to equation 2 we get

∑
w∈Π2k

(
P (w)− 1/N

)
/(2d)2k ≤ (k + 1)

(
2d− 1

d2

)k
+O(k2r+2/nr+1).
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Combining this with equation 1, and using N ≤ nr, yields

E
{
ρ2k
}
≤
(
O(k2r+2/n) + nr(k + 1)

(
2d− 1

d2

)k)
(2d)2k.

Taking k to be the greatest integer K less than (r + 1) log d2
2d−1

n yields:

(
E
{
ρ2K

})1/(2K)
≤ 2d 21/(2K) max

[O(K2r+2/n)
]1/(2K)

,

nr(K + 1)

(
2d− 1

d2

)K1/(2K)


≤ 2d

(√
2d− 1

d

)1/(r+1) (
1 +O(log logn/ logn)

)
.

Finally, Hölder’s inequality implies that for any k ≤ 2K

E {ρ} ≤ (E
{
ρk
}

)1/k ≤
(
E
{
ρ2K

})1/(2K)
≤ 2d

(√
2d− 1

d

)1/(r+1) (
1+O(log log n/ logn)

)
(3)

which completes the proof of the first statement of the main theorem. The second
claim is just a consequence of Markov’s inequality:

Prob {ρ > α} ≤
E
{
ρ2l
}

α2l
,

by putting l = K and α = (1 + ε)2d
(√

2d−1
d

)1/(r+1)
, and using inequality 3.

2

2.3 The link between expansion properties of Gn,d,r and G∗n,d,r

To obtain this link, we will not compare directly the expansion constant of a directed
graph G and its associated undirected graph G∗ (which is the graph obtained from
the directed one by replacing each directed edge by an undirected edge), but we will
compar their isoperimetric number first. This number is defined as follows:

Definition 2.7 The isoperimetric number i of a directed graph G(V,E) with n vertices
is the largest number, i, such that for any subset X of vertices with size ≤ n/2 the
following inequalities hold

|∂+(X)| ≥ i|X|
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|∂−(X)| ≥ i|X|
where ∂+(X) (respectively ∂−(X)) denotes the set of edges with initial point (respec-
tively endpoint) in X and endpoint (respectively initial point) in V \X. The isoperi-
metric number i∗ of an undirected graph G∗(V,E) with n vertices is the largest number,
i∗, such that for any subset X of vertices with size ≤ n/2 one has

|∂(X)| ≥ i∗|X|

where ∂(X) denotes the set of edges between X and V \X.

For a regular directed graph G we have:

Lemma 2.8 Let G be a regular directed graph, and G∗ its associated undirected graph.
Let i and i∗ be the isoperimetric numbers of G and G∗ respectively. Then

i =
i∗

2

Proof For a directed regular graph, it is readily seen that for any subset, X, of vertices
of the graph |∂+(X)| = |∂−(X)|. With the associated undirected graph, we have
|∂(X)| = |∂+(X)| + |∂−(X)|. Therefore |∂(X)| = 2|∂+(X)| = 2|∂−(X)| and these
equalities imply the lemma. 2

Now we can bring in the connection between the isoperimetric number i∗ of an
undirected regular graph G∗(V,E) and the second smallest eigenvalue of the Laplacian
of the graph λ(G∗) (recall here that the Laplacian is the matrix diagv∈V (deg(v))− A,
where A is the adjacency matrix of the graph G∗(V,E))

i∗ ≥ λ(G∗)

2

This inequality can be found in [Moh89] (see theorem 4.1), and is essentially due to
N. Alon and V.D. Milman (see [AM85]).

Now, it just remains to give a connection between this parameter and the isoperimet-
ric number i. Since for every subset of vertices X of a directed regular graph G(V,E)
of degree d, one has

|N+(X)| ≥ 1

d
|∂+(X)| and |N−(X)| ≥ 1

d
|∂−(X)|,

one deduces that such a graph is a i
d
-expander.

From these considerations we can deduce the lemma:
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Lemma 2.9 Let G be a regular directed graph of degree d, G∗ its associated undirected
graph. Let λ be the second largest eigenvalue in absolute value of the adjacency matrix
of G∗. Then G is a c-expander, where c = 1

2
− λ

4d
.

Proof It is readily seen that G∗ is a 2d-regular graph. Therefore the second smallest
eigenvalue of the Laplacian of this graph is greater (or equal) than 2d−λ. The preceding
discussion gives that the isoperimetric number i of G satisfies i = i∗

2
≥ 2d−λ

4
(where i∗

is the isoperimetric number of G∗). Consequently G is at least a (1
2
− λ

4d
)-expander. 2

The corollary 2.2 appears therefore as a consequence of lemma 2.9 and theorem 2.1.

3 An application to cryptography

With the development of memory card technology, and in particular the developpement
of pre-paid cards, that give access to some service, the protection of the service issuer
against fraud is becoming a crucial issue. However, for low-cost applications, the ser-
vice provider might not afford to replace his memory cards by smart cards containing
classical cryptographic protocols for identification of genuine cards. Still, it might be
possible to devise (classical) identification protocols to improve the security offered by
memory cards, while keeping their cost within reasonable bounds. In particular, per-
mutation automata have been considered as offering a general design methodology for
such purposes. We recall here some definitions and describe an identification protocol
which, albeit never published, has been circulating in the smart-card community.

Definition 3.1 An automaton is a tuple (Q,B, δ, q0) where:

• Q is a finite nonempty set of states,

• B is a finite nonempty set of input symbols or basic actions,

• δ is the next-state function which maps Q× B into Q,

• q0 ∈ Q is the initial state.

Definition 3.2 A permutation automaton is such that, for every action b, the function
δ(., b) is a permutation of Q.

We let A = B∗ be the set of finite sequences of basic actions, and we extend the
domain of the function δ to A in the usual way.
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We now consider the special case B = {0, 1}, Q = [1..n] and q0 = 1. Moreover, we
fix a parameter L and we let BL be the subset of all words of length L in A.

The basic idea of the identification protocol is to install a secret permutation au-
tomaton in each memory card. All these automata are generated from a master key,
and the card reader can reconstruct it before starting the identification. During the
identification itself, the card reader sends a random query w from BL to the memory
card, which computes the image of q0 by w, and outputs this result. The card reader
checks this result, accepts the card and issues the service if it is correct, and rejects
otherwise.

What is important in the above, is the fact that the length of the queries is fixed.
In the designer’s mind, this was presumably enough to prevent a statistical analysis
of the outputs. This was even expected to remain true if the user was allowed to
make repeated experiments with the automaton. Thus our cryptographic problem
can be interpreted as a problem of learning theory for automata, (see, for example,
[Ang78, AS83, F&al93, Gol78, RS87, RS89]). However, for all the attacks based on
learning theory that we are aware of, the number of experiments needed to construct an
automata which simulates the identification grows with the length of the query. Thus,
these attacks can be defeated by limiting the number of identifications that a single card
can perform. Yet, we show that even in this context, the above identification algorithm
is insecure by describing an algorithm that allows to reconstruct the given automaton
after a few queries (the number of queries does not depend on their size). The algorithm
is straightforward but the main achievement of the paper is an actual proof that, with
high probability, the algorithm succeeds with only a polynomial number of queries,
when the permutation automaton is chosen at random. This is by no means obvious,
and relies on Theorem 2.2. We first describe the algorithm. k and l are parameters to
be specified later.

Initialization step: Fix a set U = {u1, · · · , ut} of elements of A, all of the same
length k < L. And given any state q in Q, let Eq be the equivalence relation on U
defined by

δ(q, ui) = δ(q, uj).

Sampling step: Pick at random (without repetitions) elements ai of A of (small)
length ≤ l (s.t. k + l < L); set qi := δ(q0, ai). Repeat until the set of equivalence
relations Eqi has n distinct members. Renumber the chosen elements so that Eq1, · · ·Eqn
are distinct and discard the other values. Comment: Computing Eqi can be done by
comparing the answers given by the automaton to the concatenation a_i u

_
j wi where wi

is a word independent of j such that a_i u
_
j wi has length L and j ranges over {1, · · · , t}.
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Computing step: For i := 1 to n and for each b in B compute Eδ(qi,b). Comment:
this can be done by comparing the answers given by the automaton to the concatenation
a_i b

_u_j w where w is any fixed word of appropriate length and j ranges over {1, · · · , t}.

Identification step: Choose random words Wi of length L. Compute Eδ(q0,Wi) using
the table built in the computing step and identify this equivalence relation with the
output of the automaton under Wi. Repeat until all output states have been identified.

The sampling step of this algorithm is the most crucial one, if it can construct
n elements ai such that all Eqi are distinct then the whole algorithm will succeed,
otherwise it won’t. In order to prove this fact, let us remark that Eqi 6= Eqj implies
qi 6= qj , thus if we construct n different values Eqi, then the qi’s range over all possible
values in Q. Moreover, the equivalence classes Eq induced by U uniquely identify each
state q, and the rest of the algorithm will succeed.

We can easily characterize the properties that are needed for the sampling step to
succeed; they are the following:

1. Any state can be reached from q0 by applying a sequence of actions of length ≤ l.

2. There exists U that discriminates the given automaton, i.e. such that two differ-
ent states q 6= q′ have different equivalence relations Eq 6= Eq′ .

We now claim that the two above properties are the consequence of expansion prop-
erties of directed random graphs G1 and G3 of Gn,2,1 and Gn,2,3 respectively, both defined
by the two (random) permutations π1 = δ(., 0) and π2 = δ(., 1). From corollary 2.2
we know that G1 is almost always an α1-expander and G3 an α3-expander (the corre-
sponding values of αi are given by the corollary). We need the following theorem, that
states that expanders have small diameters:

Theorem 3.3 If G is an α-expander with v vertices, then the diameter of G is smaller
than

2(1 + log1+α(v)).

A proof of this statement can be found, for example, in [Zem94]. The idea of the proof
is to look at two distinct vertices x and y, and to consider the ball of radius r centered
at x (the vertices attained by a directed path of length ≤ r starting from x) and the
“inverse” ball of radius r centered at y ( the vertices from which we can attain y by a
directed path of length ≤ r). The crux is that the size is exponential in r (the exponent
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is at least 1+α) therefore the two balls must intersect for a radius which is logarithmic
in v- and this gives a directed path traversing the point of intersection and going from
x to y, of length at most twice the radius of the balls.

In particular, G1 has diameter smaller than 2(1+log1+α1
(n)), thus the first property

needed for the algorithm to succeed holds as soon as l > 2(1 + log1+α1
(n)). Moreover,

the number of elements of length smaller than l is polynomial in n if we choose l =
2(2+log1+α1

(n)). Thus the sampling step will take polynomial time, once U is correctly
chosen.

We now want to prove that the small diameter of G3 implies the second property.
Let us remark that in order to prove this property it suffices for any pair of states (x, y)
to produce a pair of words of the same length (smaller than k) w1 and w2 such that
δ(x, w1) = δ(x, w2) and δ(y, w1) 6= δ(y, w2). w1 and w2 can be completed to length k
by appending any fixed word of appropriate length at their ends. We construct U as
the union of all words w1(x, y) and w2(x, y).

Let d3 denote the diameter of G3, and given a pair (x, y), choose (z, r, s) such that
x, y, z, r, s are all distinct (we suppose that n ≥ 5). Since G3 has diameter d3, there
exists a word m1 of length ≤ d3 that goes from edge (x, y, z) to edge (y, z, r) and
likewise a word m2 of length ≤ d3 that goes from edge (x, y, z) to edge (y, z, s). Let
w1 = m_

1 m2 and w2 = m_
2 m1, then clearly, w1 and w2 have the same length and:

δ(x, w1) = z = δ(x, w2) and δ(y, w1) = s 6= r = δ(y, w2).

Thus the second property holds, if k ≥ 2d3 = 4(1 + log1+α3
(n)). Moreover, it suffices

to choose U = Bk, the set of all words of length k, whose size is polynomial in n if we
choose k = 4(1 + log1+α3

(n)).

Thus, we have constructed a polynomial time algorithm that reconstructs the secret
automaton of a given card as soon as n is large enough for the expansion properties of
G1 and G3 to hold. Moreover, we have implemented this algorithm for a small value
n = 8 and even in this case it succeeds with a good probability, and with less than 30
queries.
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A Proof of the Main Lemma

In this section we complete the proof of theorem 2.1 by proving the main lemma 2.5.

Here we review the Broder-Shamir-Friedman (of [BS87] and [Fri91]) approach to
understanding P (w). So fix an irreducible word, w, of length 2s over Π, and consider
the trajectory of (1, 2, . . . , r) under w. To estimate P (w) we will consider only the part
of π1, . . . , πd determined by this trajectory.

Specifically, let w = w1 · · ·w2s with wi ∈ Π, and consider the random variables

t1 = w1(1), t2 = w1(2), . . . tr = w1(r),
tr+1 = w1w2(1), tr+2 = w1w2(2), . . . t2r = w1w2(r),
. . . . . . . . . . . .
t(2r−1)s+1 = w1w2 · · ·w2s(1), . . . t2rs = w1w2 · · ·w2s(r),

in this order. For example, t1 takes on each of values {1, . . . , n} with probability 1/n;
t2 takes on each of the values {1, . . . , n}− {t1} with probability 1/(n− 1). As another
example consider tr+1 with t1, . . . , tr being determined; then there are a number of
possibilities: if w2 = w1, then tr+1 may already be determined; if w2 6= w1 then since
w2 6= w−1

1 we have that tr+1 takes on each of values {1, . . . , n} with probability 1/n.
When tj ’s value is determined by the previous values of t1, . . . , tj−1, we say that tj is a
forced choice; otherwise we say that tj is a free choice. If tj is a free choice, then clearly
tj takes on one of n−m values each with probability 1/(n−m) for some m ≤ 2rs− 1.
If a free choice happens to be a previously occurring vertex, i.e. 1, . . . , r or t1, . . . , tj−1,
we say that tj is a coincidence; this will occur with probability ≤ (r+j−1)/(n−j+1).
Notice that at least r coincidences must occur if we have that (1, 2, . . . , r) returns to
(1, 2, . . . , r) under w, i.e. that t(2s−1)r+j = j for j = 1, . . . , r.

The first estimate we need is that the probability that ≥ r+1 coincidences occurring
is small. Namely, this probability is less than(

2rs

r + 1

)
[(r + 2rs− 1)/(n− 2rs+ 1)]r+1 = O(s2r+2/nr+1).

The second estimate we need involves the more complicated analysis of how r coin-
cidences may occur; the analysis is greatly simplified by requiring w to be a strongly
irreducible word not of the form um for any m ≥ 2. So consider the graph, G, deter-
mined by the choice of the tj ’s, i.e. consisting of all vertices 1, . . . , r and t1, . . . , t2rs,
and all edges (j, tj) for 1 ≤ j ≤ r and edges (tj , tj+r) for which tj+r is a free choice,
for 1 ≤ j ≤ (2s− 1)r. This graph may have self-loops and multiple edges. Our main
claim is:
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Lemma A.1 Let r coincidences occur and assume w is not of the form um for any
m ≥ 2. If (1, . . . , r) returns to (1, . . . , r) under w, then the graph determined by the
tj’s must consist of r distinct loops of length 2s originating and terminating at each of
1, . . . , r. In particular, in this case we have that t1, . . . , t2rs−r are free choices without
coincidence, and the last r tj’s are free choices with coincidence.

Proof Consider the degrees of the vertices of the graph, G = (V,E), determined by
the tj ’s. It is easy to see that the number of coincidences is precisely:

|E| − |V |+ r = r + (1/2)
∑
v∈V

(
deg(v)− 2

)
.

Furthermore, given that (1, . . . , r) returns to (1, . . . , r) under w, and that the first and
last letter of w are not inverses of each other, then the degree of each of 1, . . . , r is at
least two. Furthermore, since w is reduced it follows that the degree of each other vertex
is at least two (for the time it is first entered and first left). Finally, each coincidence
raises the degree of a vertex by one (not counting the r coincidences corresponding to
the last letter of w at the vertices 1, . . . , r. It follows from the above formula that there
are no other coincidences, and that the degree of each vertex in G is 2. So if G does
not consist of r loops, one for each vertex 1, . . . , r, then there must exist a path from
one of these vertices to another, say from 1 to 2. If this path is of length q, then since
all paths are non-backtracking walks (since w is irreducible) in an everywhere degree
two graph, w must equal w′ where w′ is cyclic shift of w by q. But then w = um with
m = |w|/GCD(|w|, q), implying that m ≥ 2 since q < |w|, and therefore contradicting
the assumption of the theorem.

2

At this point we can bound P (w) for w not periodic by the probability of the last
r free choices being coincidences. After t2rs−r have been determined, at most 2rs− r
values of each permutation πi have been determined. So the probability that the last
r tj’s are precisely 1, . . . , r (in that order) is no more than(

1

n− 2rs+ r

)(
1

n− 2rs+ r − 1

)
· · ·

(
1

n− 2rs+ 1

)
≤ 1

(n− 2rs)r

Adding this to the probability of having ≥ r + 1 coincidences yields the main lemma.

B Proof of lemma 2.6

First of all let us bound the probability that a random word in Π2k reduces to the
empty word. Let us note qk,s the probability that a random word in Πk reduces to an
irreducible word of length s.

14



Sublemma B.1

q2k,0 ≤
(

2d− 1

d2

)k

This lemma follows from the inequality given in section 2 of [Del89]. The same
result can be obtained (asymptotically) by using lemma 3.1 of [McK81].

Let us now estimate the probability that a random word in Π2k strongly reduces to
a periodic word. As in [BS87] we will first consider the case of an irreducible word.
More precisely:

Sublemma B.2 The probability that an irreducible word of length 2s chosen uniformly
at random strongly reduces to a periodic word is less than

4s

3(2d− 1)s

Proof We proceed as in [BS87]. The number of irreducible words which have the
form waw

i
bw
−1
a (where the word wa is of fixed length t, and wb of fixed length l) is less

than: 2d(2d− 1)t+l−1 (this is because the word wawb must be irreducible). Therefore
the probability we want to estimate is less than (for d > 1)

1

2d(2d− 1)2s−1

∑
0≤t≤s−1

∑
1≤l≤s−t

2d(2d− 1)t+l−1 (4)

≤ 1

2d(2d− 1)2s−1

∑
0≤t≤s−1

(2d)2(2d− 1)s−2 (5)

=
1

2d(2d− 1)2s−1
s(2d)2(2d− 1)s−2 (6)

≤ 4s

3(2d− 1)s
(7)

2

Let us consider the set of words w of length in Π2k which reduce to a word w′ of fixed
length 2s. If we choose such a word uniformly at random, the word w′ is uniformly
distributed over the irreducible words of length 2s. From this remark and sublemmas
B.1 and B.2 we deduce that:

p2k ≤
(

2d− 1

d2

)k
+

k∑
s=1

q2k,2s
4s

3(2d− 1)s
(8)

This leads us to consider the following generating function: fl(z) =
∑l
s=0 ql,sz

s.
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Sublemma B.3 For 0 < z < 1

fl(z) ≤ z

(
(2d− 1)z2 + 1

2dz

)l−1

Proof It is readily seen that

q2l,2s =
1

2d
q2l−1,2s+1 +

2d− 1

2d
q2l−1,2s−1 (9)

q2l+1,2s+1 =
1

2d
q2l,2s+2 +

2d− 1

2d
q2l,2sfor s ≥ 1 (10)

q2l+1,1 = q2l,0 +
1

2d
q2l,2 (11)

q2l+1,2s = q2l,2s+1 = 0 (12)

From (12) it follows f2l(z) =
∑l
s=0 q2l,2sz

2s and f2l+1(z) =
∑l
s=0 q2l+1,2s+1z

2s+1

From (9) we obtain

f2l(z) =
(2d− 1)z2 + 1

2dz
f2l−1(z) (13)

From (10) and (11) we obtain

f2l+1(z) =
(2d− 1)z2 + 1

2dz
f2l(z)−

1− z2

2dz
q2l,0 (14)

From f1(z) = z, relations (13) and (14) we deduce our sublemma. 2

We are ready now to prove lemma 2.6. By using inequality (8) and sublemma B.3,
we obtain for d > 1:

p2k ≤
(

2d− 1

d2

)k
+

k∑
s=1

q2k,2s
4s

3(2d− 1)s

≤
(

2d− 1

d2

)k
+

4dk

3(2d− 1)

(
2d− 1

d2

)k

≤ (k + 1)

(
2d− 1

d2

)k
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