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Abstract

The main goal of this paper is to estimate the magnitude of the second largest
eigenvalue in absolute value, λ2, of (the adjacency matrix of) a random d-regular
graph, G. In order to do so, we study the probability that a random walk on a
random graph returns to its originating vertex at the k-th step, for various values
of k. Our main theorem about eigenvalues is that

E {|λ2(G)|m} ≤
(

2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+ O

(
d3/2 log logn

log n

))m

for any m ≤ 2
⌊
logn b

√
2d− 1/2c/ log d

⌋
, where E { } denotes the expected value

over a certain probablity space of 2d-regular graphs. It follows, for example, that
for fixed d the second eigenvalue’s magnitude is no more than 2

√
2d− 1+2 log d+

C′ with probability 1− n−C for constants C and C′ for sufficiently large n.

1 Introduction

Let G be a d-regular (i.e. each vertex has degree d) undirected graph, and let A be its
adjacency matrix. We allow G to have multiple edges, in which case the corresponding
entry of A is that multiplicity; we allow (possibly multiple) self-loops, in which case
the corresponding entry of A is twice the multiplicity of the self-loop. Since A is
symmetric it is diagonalizable with (an orthogonal set of eigenvectors and with) real
eigenvalues. It is easy to see that d is the largest eigenvalue in absolute value (with the
all 1’s eigenvector). Let λ2 = λ2(G) be the next largest eigenvalue in absolute value.
∗The author wishes to acknowledge the National Science Foundation for supporting this research in

part under Grant CCR–8858788, and the Office of Naval Research under Grant N00014–87–K–0467.
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1 INTRODUCTION 2

The magnitude of |λ2| has received much attention in the literature: for example, it
is useful to give some estimate of the expansion properties of G (see [Tan84],[Alo86])
or the rate of convergence of the Markov process on G (with probabilities 1/d at each
edge) to the stable distribution (see [BS87] for more on this and references). The
smaller |λ| the better, usually; intuitively it measures the difference (in L2 operator
norm) between A and the all d/n ’s matrix, and more generally that between Am and
the all dm/n ’s matrix.

The main goal of this paper is to estimate the magnitude of |λ2| of a random
d-regular graph. We view d as fixed and n→∞; if d is sufficiently large with respect
to n, it is well known that |λ2| = O(

√
d) with high probability. In order to estimate

|λ2|, we study the probability that a random walk on a random graph returns to
its originating vertex at the k-th step, for various values of k (for us, k ≈ log n or
(log n)2 are important). We will actually work with 2d-regular graphs, drawn from a
probability space Gn,2d to be defined shortly. Our main theorem is

Theorem A For G ∈ Gn,2d we have

E {|λ2(G)|} ≤ 2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

)

(with an absolute constant in the O( ) notation), where E { } denotes the expected
value over Gn,2d and where the logarithm is taken base e; more generally we have

E {|λ2(G)|m} ≤
(

2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

))m

for any m ≤ 2blog n b
√

2d− 1/2c/ log dc.

All logarithms in this paper are taken base e. A corollary of this theorem is

Theorem B For any β > 1 we have

|λ2(G)| ≥
(

2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

))
β

with probability

≤ β2

n2b
√

2d−1/2c log β/ log d
.

In particular, we have that for any C there is a C ′ such that for any d there is an n0

such that if n ≥ n0 then a G ∈ Gn,2d has

|λ2(G)| ≤ 2
√

2d− 1 + 2 log d+ C ′

with probability at least 1− n−C.
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One can compare this to the well-known lower bound

|λ2(G)| ≥ 2
√

2d− 1 +O

(
1

logd n

)
for any 2d-regular graph, G, with, say, d ≤

√
n (the bound as stated is easy, and

has been discovered by many people; for a proof see section 3; a similar result also
holds for the second largest positive eigenvector, see [McK81] and Alon and Boppana
in[Alo86]). Previously Broder and Shamir, in [BS87] had shown that for fixed d,

E {|λ2(G)|} ≤ 25/4d3/4(1 + ε+ o(1))

as n → ∞, and the analog to the second equation in theorem A with m ≤ (2 −
ε′) logd/2 n. Our method refines Broder and Shamir’s estimate of the probability
that a random walk in a random graph returns to its original vertex after some
specified number of steps; this therefore improves the estimates on |λ2(G)|. Also,
Kahn and Szemerédi, in [KS], have independently given a much different approach,
which modifies the standard counting argument (the standard counting argument
gives no interesting bound), to get |λ2(G)| = O(

√
d) with probability → 1 as n→∞.

The following conjecture of Alon is still unresolved, which states that for fixed d, as
n→∞, |λ2| ≤ 2

√
2d− 1 + ε with high probability for any epsilon > 0.

The standard approach to estimating eigenvalues is to estimate the trace of a high
power of the adjacency matrix, i.e. estimate the probability that a random walk of a
given length will return to the starting vertex on a random graph. Since

Trace
(
Ak
)

=
n∑
i=1

λki

for a matrix, A, with eigenvalues λ1, . . . , λn, this gives bounds on the magnitude of
the largest unknown eigenvalue. This method was used by Wigner in [Wig55] to find
the limiting distribution (the “semi-circle law”) of the eigenvalues in a random n× n
symmetric matrix with independently chosen entries drawn from a fixed distribution,
as n→∞; implicit in his paper is that when the expected value of the entry is 0 the
largest (second largest otherwise) eigenvalue is of magnitude roughly proportional
to
√
n. His approach to estimating the trace of high powers of the matrix, and

subsequent refinements (see [Gem80], [FK81] for example) do not work when the
distribution of the entries vary too much with n, in particular with matrices of graphs
whose edge density decreases too fast with n. In [McK81], McKay derived a semi-
cirlce law for d regular graphs, i.e. the limiting distribution of the eigenvalues, but the
method did not give bounds on |λ2| (the limiting distribution only gives information
on n−o(n) of the eigenvalues). In [Mar87] and [LPS86], Margulis and (independently)
Lubotzky, Phillips, and Sarnak constructed a class of graphs with |λ2| ≤ 2

√
d− 1.

In [BS87], Broder and Shamir gave a method of estimating traces for random graphs
which gave |λ2| = O(d3/4) with high probability. In this paper we use Broder and
Shamir’s framework for trace estimates; we also make use of the cosine substitution
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and resulting formulas as in [LPS86], and Alon’s theorem that says expansion implies
“small” second eigenvalue, in [Alo86]. We begin by reviewing the terminology and
results in [BS87].

The model we take is for a random 2d-regular graph on n vertices. Choose in-
dependently d permutations of the numbers from 1 to n, each permutation equally
likely. We construct a directed graph, G = (V,E) with vertex set V = {1, . . . , n} and
edges

E =
{

(i, πj(i)), (i, π−1
j (i)) | j = 1, . . . , d i = 1, . . . , n

}
.

G is therefore a graph with possibly multiple edges and self-loops, and which is sym-
metric in the sense that for every edge in the graph the reverse edge is also in the
graph. Although G is directed, we can view it as an undirected graph by replac-
ing each pair of edges (i, π(i)), (π(i), i) with one undirected edge. We denote this
probability space of random graphs Gn,2d.

Let A be the adjacency matrix of a graph G ∈ Gn,2d. Let Π be the alphabet of
symbols

Π = {π1, π
−1
1 , π2, . . . , π

−1
d } .

We think of π1, . . . , πd as being the d permutations from which G was constructed,
and any word, w = σ1 . . . σk of Π∗ as the permutation which is the composition of the
permutations σ1, . . . , σk. Let

i
w→ j ≡

{
1 if w(i) = j
0 otherwise

}
.

We have that the i, j-th entry of Ak is∑
w∈Πk

i
w→ j .

We wish to estimate the expected value of the above sum for i = j. In evaluating
i
w→ i, we can cancel in w any consecutive pair of letters ππ−1 with π ∈ Π. We say

that a word w ∈ Πk is irreducible if w has no pair of consecutive letters of the form
ππ−1. We denote the set of irreducible words of length k by Irredk. Clearly Irredk
has size 2d(2d − 1)k−1. It turns out that to estimate the second eigenvalue it suffices
to get an estimate of the form

∑
w∈Irredk

i
w→ i = 2d(2d − 1)k−1 1

n
+ error (1.1)

for all fixed i with a small error term; to estimate the expected second eigenvalue it
suffices to estimate the expected value of the left-hand-side of equation 1.1. Intuitively,
for k ≥ 1 we expect that words in Irredk will send a fixed vertex to each vertex with
more or less equal probability, 1/n. The corresponding eigenvalue estimate is roughly
O(n1/k(

√
d + error1/k)). In [LPS86], the error terms for a specific family of graphs



2 AN ASYMPTOTIC EXPANSION 5

were each bounded by (cd)k/2 for all k, yielding |λ2| ≤ 2
√
d− 1. In [BS87] the error

term for the expected value over Gn,2d was bounded as

O

(
k4

n2
2d(2d − 1)k−1 +

k

n
(cd)k/2

)
,

which for k = 2 logd n is ≤ (cd)3k/4/n.
In this paper we obtain sharper estimates on the error term for the expected value

over Gn,2d. One that is useful for information on the eigenvalues is (corollary 3.6)

Theorem C There is a constant c such that the error term in equation 1.1 is no
more than

2d(2d − 1)k−1 (ckd)c
(

k2
√

2d

n1+b
√

2d−1/2c
+

(2d − 1)−k/2

n

)
. (1.2)

for all k with k ≤ n1/(c
√
d)/(cd3/2) and d ≥ 4.

(See theorem 2.18 for other estimates on the error term.) From the above theorem
we derive estimates on the second eigenvalue.

In section 2 we do the most of the work, which is to prove that the sum in
equation 1.1 has an r-th order asymptotic expansion in 1/n for any r ≤

√
2d− 1/2 of

the form

E

 ∑
w∈Irredk

i
w→ i

 = 2d(2d−1)k−1
(

1
n
f0(k) +

1
n2

f1(k) + . . .+
1
nr
fr−1(k)

)
+error ,

(1.3)
where the error involves a 1/nr+1 term and a term like the second term in equation 1.2,
and where the fi’s are polynomials of degree 5i + 2 whose coefficients are bounded
by (cdr)cr

2
. In section 3 we show why theorem C follows from equation 1.3, i.e.

why f0(k) = 1 and all the other fi’s must vanish, and derive information on the
eigenvalues, such as theorem A.

2 An Asymptotic Expansion

The goal of this section is to develop the asymptotic expansion of equation 1.3. We
first explain the reason that such an expansion should exist, reviewing the ideas in
[BS87]. Throughout this section we will bound error terms by expressions involving
various absolute constants. Rather than giving each one a distinct name, we shall
denote them all by c; in cases where confusion could arise we shall also use c′.

For w = σ1 . . . σk ∈ Irredk and i fixed, consider the random variable i w→ i. We
wish to estimate E{i w→ i}. In [BS87] the analysis is as follows. It is helpful to consider
the random variables t1 = σ1(i), t2 = σ2(t1), etc. which trace i’s path through G
along w. We simplify the calculation of E{i w→ i} over Gn,2d by considering only the



2 AN ASYMPTOTIC EXPANSION 6

values of π1, . . . , πd needed to determine the tj’s and therefore the value of i w→ i. So
consider the process of selecting an element of Gn,2d by first selecting t1, then t2, until
tk, and then determining the remaining values of the πj’s.

To determine t1 it suffices to know the value of σ1(i), which clearly takes on
the values {1, . . . , n} each with probability 1/n. Next we determine the value of
σ2(t1); there are a few cases to consider. If σ2 6= σ1, then σ2 and σ1 represent
different permutations (since w is irreducible, σ2 6= σ−1

1 ), and so t2 takes on the
values {1, . . . , n} each with probability 1/n. If σ1 = σ2, then either t1 = i and so t2
is forced to be i, or t1 6= i, in which case t2 takes on the values {1, . . . , n} − {t1} each
with probability 1/(n − 1). We can continue to determine t3, . . . , tk in this fashion,
each tj ’s value conditional on the values of the previous ones. When tj’s value is
exactly determined by the previous values, i.e. σj(tj−1)’s value is known, we say that
tj is a forced choice; otherwise we say that tj is a free choice. If tj is a free choice,
then clearly tj takes on any one of n−m values with probability 1/(n−m) for some
m ≤ j − 1. If a free choice tj happens to be a previously visited vertex (i.e. = i or
= tm for some m < j) we say that tj is a coincidence; given that tj is a free choice, tj
will be a coincidence with probability ≤ j/(n− j+ 1). During this paper we will also
call an edge (tj−1, tj) a free choice, forced choice, or coincidence if tj is respectively a
free choice, forced choice, or coincidence.

In [BS87], it is observed that two coincidences occur in any given w and i with
probability no greater than(

k

2

)(
k − 1

n− k + 1

)2

= O

(
k4

n2

)
.

This accounts for the first of their error terms. The rest of the work is to analyze
the case of one coincidence, since if there are no coincidences then clearly i

w→ i is 0.
We will analyze the case of ≤ r coincidences for any r ≤

√
2d− 1/2, and show that

the error term in equation 1.1 actually has an r term asymptotic expansion in 1/n,
whose coefficients are polynomials in k for any fixed d. The key to the proof is to
group together walks in the graph which have the same rough shape, which we call
the type of the walk.

Let

i0
w1−→ i1

w2−→ · · · wj−→ ij ≡
{

1 if wk(ik−1) = ik for k = 1, . . . , j
0 otherwise

}
.

Consider

E

 ∑
w∈Irredk

i
w→ i

 =
∑

w=σ1...σd∈Irredk
tj∈{ 1,...,n}, j=1,...,k−1

E
{
i
σ1−→ t1

σ2−→ · · · σk−1−→ tk−1
σk−→ i

}
.

We will group the terms of the right-hand-side summation by their geometric configu-
ration. Fix a word w = σ1 . . . σd, integer i, and sequence of integers t = (t1, . . . , tk−1)
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and let tk = i. With these values we associate a directed graph, Γw,i,t, with edges
labeled by Π. The graph’s vertex set is V = {i1, . . . , im}, where m is the number of
distinct integers among i and t; we think of i1 as representing i and, more generally, il
as representing the l-th distinct member of the sequence i, t1, . . . , tk−1. The edge set,
E, has one edge ej for each free choice tj ; ej is an edge (ia, ib) where ia ib respectively
represent the values of tj−1 and tj ; in addition ej is labeled with σj. Γw,i,t represents
the geometric structure of the intended path from i through t and back to i along w;
it contains the amount of conditioning on π1, . . . , πd given that the intended path is
actually taken. We say call Γw,i,t the generalized form of w, i, t.

Consider an abstract generalized form, Γ = (VΓ, EΓ), i.e. a directed graph with
vertices named VΓ = {i1, . . . , im} and with edges labelled by Π, which is = Γw,i,t for
some (w, i, t) triple, but where we ignore the particular (w, i, t) from which is arises
(at least for the time being). Let aj(Γ) denote the total number of occurences of πj
and π−1

j as labels of edges. aj gives the number of values of πj determined by Γ. For
a fixed w we have∑

{(i,t)|Γw,i,t=Γ}
E
{
i

σ1−→ t1
σ2−→ · · · σk−1−→ tk−1

σk−→ i
}

=

n(n− 1) . . . (n− |VΓ|+ 1)
d∏
j=1

1
n(n− 1) . . . (n− aj(Γ) + 1)

,

where the j-th term in the above product is omitted if aj(Γ) = 0. We denote the
above by Pr (Γ). We can expand

Pr (Γ) =
1

ncoin(Γ)−1

(
1 +

c1
n

+
c2
n2

+ · · ·
)

(2.1)

where the cj’s are constants depending on Γ and coin (Γ) denotes the number of
coincidences in Γ (more precisely in any triple (w, i, t) with Γw,i,t = Γ), which does
not depend on (w, i, t). Clearly∑

w∈Irredk
i=1,...,n

E
{
i
w→ i
}

=
∑
Γ

Pr (Γ)ω(Γ, k) , (2.2)

where ω(Γ, k) denotes the number of irreducible words, w, of length k compatible
with Γ, i.e. for which there are i and t with Γw,i,t = Γ.

Next we group together generalized forms, Γ, whose underlying graphs have the
same rough shape. Consider again, for a fixed word, w, and vertex, i, the process
of determining the tj ’s. We begin by generating distinct vertices t1, t2, ..., adding
vertices and edges to Γ, until we encounter a coincidence. We may then encounter
forced choices, which is to say walk in Γ without generating new vertices or edges,
until we encounter a free choice, tl. Starting with the edge from tl−1 to tl, we depart
from the “old” Γ, walking along new edges and vertices until we encounter our next
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coincidence. We call a point such as tl−1 (more precise, the last vertex in a consecutive
sequence of forced choices) a departure. We will sometimes also refer to the edge
(tl−1, tl) as a departure, if tl−1 is. Clearly departures alternate with coincidences
throughout the walk. We now group Γ’s by forgetting any vertex which is not a
coincidence or a departure. In other words, we forget all degree 2 vertices (except i1);
nothing interesting happens at them.

We say that a vertex ij of Γ is a coincidence (departure) if one of its corresponding
tl’s is a coincidence (departure); as with coin (Γ), these notions are independent of
(w, i, t). In fact, i1 is always a coincidence, ij for j > 1 is a coincidence iff its indegree
is > 1, and ij for all j is a departure iff its outdegree is > 1. Any vertex of Γ which
is not a coincidence or a departure has indegree and outdegree 1, and so the edges
of Γ are a union of simple (directed) paths from pairs of the subset of vertices, S,
consisting of all coincidences and departures. With Γ we associate its type, TΓ, which
is an undirected graph, possibly with multiple edges and self-loops. Its vertex set is
{v1, . . . , vl} where l = |S|, and as before we think of vj as representing the j-th vertex
of S in the order i1, . . . , im. TΓ has an edge for each simple directed path from pairs
of S.

Given an abstract type, T , which is just an undirected graph (corresponding to at
least one Γ), we order any group of multiple edges to distinguish each edge from its
copies. In other words, for each edge of multiplicity s, represented by distinct edges
{e1, . . . , es}, we label {e1, . . . , es} with distinct integers {1, . . . , s} in some fashion.
This labelling is equivalent to imposing an order on each group of multiple edges. We
call a type together with such an ordering or labelling a type with ordered multiple
edges, or simply an ordered type. The point is that given an abstract generalized
form, Γ, any word w compatible with Γ gives rise to a unique oriented labelling with
labels in Π∗ of the edges of the corresponding (abstract) ordered type TΓ (an oriented
labelling being one where we orient the edge and give it a label, assigning the inverse
label to the oppositely oriented direction), and to a unique walk in TΓ. To see this,
consider the walk from i1 to itself along w, which traces out a unique walk in Γ. This
gives rise to possibly many walks in TΓ, but only to one walk such that (1) the edges
are labelled and oriented as they are traversed, labelled with the word in Π∗ which is
simultaneously traced out in Γ, and oriented in the direction traversed, (2) once an
edge is labelled it is traversed only when it matches the word in Π∗ traced out during
the traversal, and (3) multiple edges are traversed in increasing order.

Conversely, let T be an (abstract) ordered type. By a legal walk in T we mean a
walk from v1 to itself which traverses every edge at least once, and which traverses
multiple edges in increasing order. By a legal oriented labelling we mean an oriented
labeling of T ’s edges by irreducible words in Π∗ of length ≥ 1 such that for any vertex,
v, in T the labels on the outwardly oriented edges from v begin with distinct letters.
It is easy to see that we have a one-to-one correspondence

{(Γ, w) | General forms, Γ, w ∈ Irred compatible with Γ} 1−1←→
{(T, y, `) | Ordered types T , legal walks y and oriented labellings ` for T} .
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To calculate the asymptotic expansion, we will sum over types, walks, and oriented
labellings, rather than over generalized forms and words.

Given a legal walk, y, on an ordered type, T , we define the multiplicity of the walk
to be the function which assigns to each edge of T the number of times it is traversed,
disregarding orientation. For a legal oriented labelling, `, of T , we define the lettering
of the labelling to be the function which takes a vertex, v, and an incident edge, e, and
returns the first letter of e’s label with the outward orientation from v. We define the
weight of the labelling to be the function which takes an edge and returns the length
of the word with which it it labelled. The notion of coin (T ) for types T carries over
from that of generalized forms (i.e. as equal to coin (Γ) for one and therefore all Γ’s
with TΓ = T ). Our strategy will be to fix a type, a multiplicity, and a lettering, and
then sum the corresponding terms in equation 2.2.

We are now ready for the nitty-gritty. Lemmas which are not followed by proofs
are immediate or easy.

Lemma 2.1 For any type, T = (V,E) we have coin (T ) = |E| − |V |+ 1.

Lemma 2.2 For a type, T , of coincidence r we have |V | ≤ 2r and |E| ≤ 3r − 1.

Proof In any legal walk in a generalized form, the coincidences and departures
alternate, starting and ending with coincidences. Any vertex, vl, of the type, with
l ≥ 2, must be either a coincidence or a departure (or both). Thus |V | ≤ 2r. This
and lemma 2.1 yield |E| ≤ 3r − 1.

2

Lemma 2.3 The number of types of coincidence r is less than (2r)6r−2. The number
of types of coincidence ≤ r is less than (2r)6r−1.

Lemma 2.4 The number of letterings of a type of coincidence r is ≤ (2d)6r−2.

Let Tr be the type with two vertices, v1, v2, with one edge from v1 to v2 and r
edges from v2 to itself (i.e. self-loops). Tr is of coincidence r.

Lemma 2.5 In a type, T , of coincidence r which is not equal to Tr, each vertex has
degree at most 2r.

Proof Again, consider any legal walk in a generalized form. When a vertex is first
encountered it is entered and left, giving it indegree and outdegree 1 up to that point.
Then it can be entered by coincidence edges up to r times, and left by departure edges
up to r − 1 times. The degree of the corresponding vertex in the type will therefore
have degree ≤ 2r + 1. We claim that equality can only occur in the type Tr. For
equality implies that the corresponding vertex, v, in the type must have r self-edges
and that it is the only coincidence and departure in the type; this leaves room for
only (possibly) one other vertex, v1, which corresponds to i1. If v is not v1, then this
type must be Tr, and if v = v1, then v’s degree is 2r.
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2

Lemma 2.6 In a fixed type of coincidence r, there are ≤ (2r)m legal walks whose
sum of its mutliplicities is m.

Proof If T is not Tr, then each vertex has degree ≤ 2r and so there are ≤ (2r)m

legal walks of length m in T . In Tr, a legal walk consists of one step from v1 to v2,
then m−2 steps each taking one of the r self-loops in either of its two directions, and
finally returning to v1, for a total of ≤ (2r)m−2 legal walks.

2

Consider the function

g(x) = (1− b1x) . . . (1− brx)
(

1
1− c1x

)
. . .

(
1

1− csx

)
,

where b1, . . . , br, c1, . . . , cs are positive constants. Its i-th derivative is

∑
i1+···+ir+j1+···+js=i
ik≤1 for k=1,...,r

(
i

i1, . . . , ir, j1, . . . , js

)
(−b1)i1(1− b1x)i1−1 . . . (−br)ir(1− brx)ir−1 ×

j1! . . . js!
cj11 . . . cjss

(1− c1x)j1 . . . (1− csx)js
.

For any 0 ≤ x ≤ 1/c, where c is an upper bound on the bk’s and ck’s, we have

|g(i)(x)| ≤
(

1
1− xc

)i
i!

∑
i1+···+ir+j1+···+js=i

(
i

i1, . . . , ir, j1, . . . , js

)
bi11 . . . b

ir
r c

j1
1 . . . cjss

=
(

1
1− xc

)i
i!
(∑

bk +
∑

ck
)i
, (2.3)

by the multinomial theorem. As a consequence we have

Lemma 2.7 For any generalized form Γ of ≤ k edges, Pr (Γ) has an expansion

Pr (Γ) =
1

ncoin(Γ)−1

(
p0 +

p1

n
+
p2

n2
+ · · ·+ pr

nr
+

ε

nr+1

)
(2.4)

(with p0 = 1), where ε is an error term bounded by

e(r+1)k/nk2r+2

and the pi’s are constants.
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Proof We apply equation 2.3 to equation 2.1, where we have
∑
bj +

∑
cj ≤ k2. By

Taylor’s theorem, ε is bounded by

1
(r + 1)!

(
1

1− kξ

)r+1

(r + 1)! (k2)r+1 ,

for some ξ ∈ [ 0, 1/n] for each n.

2

The pi of lemma 2.7 are polynomials in the aj and |VΓ| of equation 2.1, and we
wish to bound their size and coefficients.

For any integer a, consider the function

g(x) =
1

1− x
1

1− 2x
. . .

1
1− ax .

A power series for g is given in terms of Stirling numbers. We wish to bound the size
of their coefficients as polynomials in a.

Lemma 2.8 g(x)’s power series about x = 0 is of the form

1 + xR1(a) + x2R2(a) + · · ·+ xrRr(a) + · · · ,

where the Ri’s are polynomials of degree 2i,

Ri(a) =
2i∑
j=0

ci,j

(
a

j

)
,

where the ci,j’s are non-negative integers with

ci,0 + · · ·+ ci,2i ≤ 8ii! .

Proof Writing

1 + xR1(a) + x2R2(a) + · · · = (1 + ax)(1 + xR1(a− 1) + x2R2(a− 1) + · · ·)

and comparing terms yields

Rr(a) = Rr(a− 1) + aRr−1(a) (2.5)

for r ≥ 1 (with R0(a) ≡ 1). We get a definition for the Rr’s recursive in r. Since
R0(a) is 1 it easily follows that Rr is a polynomial of degree 2r. Since Rr(1) = 1 for
all r, setting a = 1 in equation 2.5 yields Rr(0) = 0, where we identify Rr with the
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polynomial which agrees with it on all positive integers. Thus cr,0 = 0 for all r. For
the other coefficients we have

Rr(a)−Rr(a− 1) =
2r−2∑
k=0

cr−1,k a

(
a

k

)

=
2r−2∑
k=0

cr−1,k

((
a

k + 1

)
(k + 1) +

(
a

k

)
k

)

=
2r−2∑
k=0

cr−1,k

((
a− 1
k + 1

)
(k + 1) +

(
a− 1
k

)
(k + 1) +

(
a− 1
k

)
k +

(
a− 1
k − 1

)
k

)
.

Solving the above difference equation it follows by induction on r that all the cr,k’s
are non-negative integers, and that

∑
k cr,k ≤ (8r − 6)

∑
k cr−1,k.

2

Similarly, we consider

g(x) = (1− x)(1 − 2x) . . . (1− ax) .

Lemma 2.9 g(x)’s power series about x = 0 is of the form

1− xQ1(a) + x2Q2(a)− · · ·+ (−1)rxrQr(a) + · · · ,

where the Qi’s are polynomials of degree 2i,

Qi(a) =
2i∑
j=0

ci,j

(
a

j

)
,

where the ci,j’s are non-negative integers with

ci,0 + · · ·+ ci,2i ≤ 4ii! .

Proof The Q’s satisfy

Qr(a) = Qr(a− 1) + aQr−1(a− 1),

and a similar analysis yields the lemma.

Corollary 2.10 In equation 2.4, we have

pi(Γ) =
∑
|I|≤i

ci,I

(
|VΓ| − 1
I0

)(
a1(Γ)− 1

I1

)
. . .

(
ad(Γ)− 1

Id

)
, (2.6)

where we have used “tensor” notation with I = (I0, . . . , Id) (i.e. Ik’s are non-negative
integers, and |I| = I0 + · · ·+ Id), with constants ci,I each of absolute value ≤ 8ii! .
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Our goal is to estimate the terms of the sum in the right-hand-side of equation 2.6,
when summed over all (Γ, w) pairs of a given type. This is easy once a lettering of
the type is fixed.

For a fixed σ, τ ∈ Π, let Irredk,σ,τ denote the set of irreducible words of length k
beginning with σ and ending with τ .

Lemma 2.11 For any σ, τ ∈ Π and non-negative integers s1, . . . , sd we have

f(k) ≡
∑

w∈Irredk,σ,τ

(
a1(w)
s1

)
. . .

(
ad(w)
sd

)
= (2d− 1)kP (k) + (−1)kQ(k) +R(k)

where P,Q,R are polynomials of degree s = s1 + · · ·+ sd with coefficients bounded by
(cd)cs.

Proof Consider the 2d× 2d matrix

M =



x1 0 x2 x2 · · · xd xd
0 x1 x2 x2 · · · xd xd
x1 x1 x2 0 · · · xd xd
x1 x1 0 x2 · · · xd xd
...

...
...

...
. . .

...
...

x1 x1 x2 x2 · · · xd 0
x1 x1 x2 x2 · · · 0 xd


i.e. the matrix M whoose coefficients are

M2i−1,2j−1 = M2i,2j = xj
M2i,2j−1 = M2i−1,2j = xj if i 6= j
M2i,2j−1 = M2i−1,2j = 0 if i = j

over all 0 ≤ i ≤ d and 0 ≤ j ≤ d. It is easy to see that

(Mk)i,j =
∑

w∈Irredk,σi,σj

x
a1(w)
1 . . . x

ad(w)
d

where σ2i−1 is πi and σ2i is π−1
i . Hence

f(k) =
1

s1! . . . sd!

((
∂

∂x1

)s1
. . .

(
∂

∂xd

)sd
Mk

∣∣∣∣
x1=···=xd=1

)
a,b

for the a, b with σa = σ, σb = τ . Let Ci = ∂
∂xi
M , which is a matrix with 4d − 2 1’s

and the rest 0’s. All second derivatives of M vanish, and so

1
s1! . . . sd!

(
∂

∂x1

)s1
. . .

(
∂

∂xd

)sd
Mk =∑

(i1,...,is)

∑
j0+···+js=k−s

M j0Ci1M
j1Ci2 . . . CisM

js
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where the first summation is over all tuples (i1, . . . , is) which contain s1 1’s, s2 2’s,
etc. For fixed (i1, . . . , is) we have∑

j0+···+js=k−s
M j0Ci1 . . .M

js |x1=···=xd=1 =
∑

j0+···+js=k−s
Cj0Ci1 . . . C

js

where

C = M |x1=···=xd=1 =



1 0 1 1 · · · 1 1
0 1 1 1 · · · 1 1
1 1 1 0 · · · 1 1
1 1 0 1 · · · 1 1
...

...
...

...
. . .

...
...

1 1 1 1 · · · 1 0
1 1 1 1 · · · 0 1


.

We claim that C has eigenvalues 2d − 1, −1 with multplicity d − 1, and 1 with
multiplicity d. To see this, note that the map T : R2d → R2d given by

T (y1, . . . , y2d) = (y1 + y2, y1 − y2, y3 + y4, y3 − y4, . . . , y2d−1 − y2d)

gives

TCT−1 =



1 0 2 0 · · · 2 0
0 1 0 0 · · · 0 0
2 0 1 0 · · · 2 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

2 0 2 0 · · · 1 0
0 0 0 0 · · · 0 1


.

By permuting the basis vectors this becomes the block matrix with d× d blocks(
B 0
0 I

)
, (2.7)

where I is the identity matrix, and

B =


1 2 2 · · · 2
2 1 2 · · · 2
2 2 1 · · · 2
...

...
...

. . .
...

2 2 2 · · · 1

 .

Since B+I is the d×d matrix of all 2’s, whose eigenvalues are 2d (simple) and 0 with
multiplicity d− 1, it follows that B’s eigenvalues are 2d− 1 and −1 with multiplicity
d − 1. Thus C’s eigenvalues, which by equation 2.7 are the union of those of B and
those of I, are 2d− 1 (simple), −1 with multiplicity d− 1, and 1 with multiplicity d.
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Thus ∑
j0+···+js=k−s

Cj0Ci1 . . . C
js =

∑
j

ADj0A−1Ci1AD
j1A−1 . . . CisAD

jsA−1

where D is the diagonal matrix with diagonal consisting of one 2d − 1, d − 1 −1’s,
and d 1’s, and A is an orthogonal matrix diagonalizing C. We can write the sum on
the right-hand-side of the above equation as∑

j

ADj0E1D
j1 . . . EsDjsA

−1 (2.8)

with
Ej = A−1CijA .

Since
‖Ej‖2 = ‖A‖2 ‖Cij‖2 ‖A−1‖2 = ‖Cij‖2 ≤

√
4d− 2 ,

(where ‖ ‖2 denotes the L2 operator norm) we have that each of Ej’s entries are
≤
√

4d− 2. Clearly each of A and A−1’s entries are ≤ 1 in absolute value. Therefore,
the a, b-th entry of the matrix in equation 2.8,∑
j

∑
b0,...,bs∈[ 1,...,2d]

(A)a,b1(Dj0)b0,b0(E1)b0,b1(Dj1)b1,b1 . . . (Es)bs−1,bs
(Djs)bs,bs(A

−1)bs,b ,

is just ∑
j

∑
ε0,...,εs

εl∈{2d−1,−1,1}

cε0,...,εsε
j0
0 . . . εjss (2.9)

where the cε0,...,εs ’s are constants. Fixing ε0, . . . , εs and letting α, β, γ be the number
of respective occurences of 2d− 1, −1, 1 among the ε’s, we see that

|cε0,...,εs| ≤ (4d− 2)s/2(d− 1)βdγ ≤ 2sd3s/2 . (2.10)

Also,

∑
j

εj00 . . . εjss =
∑

u+v+w=k−s
(2d− 1)u(−1)v

(
u+ α− 1
α− 1

)(
v + β − 1
β − 1

)(
w + γ − 1
γ − 1

)
.

(2.11)
From

k∑
u=0

Ru =
Rk+1 − 1
R− 1

we derive∑
u+v≤k
u,v≥0

RuSv =
(
Rk+1 − 1
R− 1

)
+
(
Rk − 1
R− 1

)
S + · · ·+

(
R1 − 1
R− 1

)
Sk
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=
Rk+1

R− 1

(
1 +

S

R
+ · · · +

(
S

R

)k)
− 1
R− 1

(1 + S + · · · + Sk)

=
Sk+2(R− 1) +Rk+2(1− S) + (S −R)

(R − 1)(S − 1)(S −R)

and thus

∑
u+v+w=k
u,v,w≥0

RuSvPw =
Sk+2(R− P ) +Rk+2(P − S) + P k+2(S −R)

(R − P )(S − P )(S −R)
.

Multiplying the above byRα−1Sβ−1P γ−1, then differentiating by ( ∂
∂R )α−1( ∂

∂S )β−1( ∂
∂P )γ−1,

the substituing k − s for k yields

∑
u+v+w=k−s

(2d− 1)u(−1)v
(
u+ α− 1
α− 1

)(
v + β − 1
β − 1

)(
w + γ − 1
γ − 1

)
(2.12)

is equal to a sum of six terms, the first of which is

1
(α− 1)!

1
(β − 1)!

1
(γ − 1)!

(
∂

∂R

)α−1( ∂

∂S

)β−1( ∂

∂P

)γ−1[ RαSk−s+β+1P γ−1

(R− P )(S − P )(S −R)

]
evaluated at R = 2d−1, S = −1, P = 1; the other five terms are similar. In the above
term, the ∂

∂P ’s can be applied to any of the three terms P γ−1 (in the numerator) and
(R − P ) and (S − P ) (in the denominator), and similarly for the other partials. We
get a sum of 3α+β+γ−3 terms, each of the form(

k − s+ β + 1
l

)
Skθ ,

where l is an integer between 0 and s and θ is a polynomial in R,S, P , independent
of k, which satisfies

|θ(R,S, P )|
∣∣∣
R=2d−1,S=−1,P=1

≤ (2d− 1)s .

The coefficients of the polynomial(
k − s+ β + 1

l

)

are clearly dominated by those of

(k + s)l

l!
,
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which are clearly less than

max
j=0,...,l

sj
(l
j

)
l!
≤ max

j=0,...,l

sj

j!
≤ es.

After doing a similar analysis for the other five terms whose sum equals the expression
in equation 2.12, it follows that the expression in equation 2.11 is of the form

(2d− 1)kp(k) + (−1)kq(k) + r(k)

with p, q, r polynomials of degree s whose coefficients are bounded by

3s−2es(2d − 1)s .

Summing over the 3s+1 possibilities for ε0, . . . , εs in equation 2.9, using also equa-
tion 2.10, yields

f(k) ≡
∑

w∈Irredk,σ,τ

(
a1(w)
s1

)
. . .

(
ad(w)
sd

)
= (2d − 1)kP (k) + (−1)kQ(k) +R(k)

where P,Q,R are polynomials in k of degree s whose coefficients are bounded by

2sd3s/23s+13s−2es(2d− 1)s < (36e)sd5s/2 .

2

Corollary 2.12 For any σ, τ ∈ Π and non-negative integers s1, . . . , sd we have

f(k) ≡
∑

w∈Irredk,σ,τ
(a1(w))s1 . . . (ad(w))sd = (2d− 1)kP (k) + (−1)kQ(k) +R(k)

where P,Q,R are polynomials of degree s = s1 + · · ·+ sd with coefficients bounded by
(cds)cs for some absolute constant c.

Proof We use the fact that the constants cm in

xn =
n∑

m=0

cm

(
x

m

)

are always positive (see, for example, [Knu73] page 65); it follows that cm ≤ nn

by substituting n for x in the above. Applying this to each ai(w)si , expanding the
product, and applying the previous lemma yields the desired result.

2
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For a type T = (VT , ET ) with ET = {e1, . . . , et}, let LT,k1,...,kt denote the set of
oriented labelling with weights (k1, . . . , kt). For a labelling, `, we define ai(`) to be
the number of occurences of πi and π−1

i in `. Any generalized form, Γ, compatible
with T and a labelling in LT,k1,...,kt has

|VΓ| = |VT |+
∑

(kj − 1) = |VT |+ |`| − t = |`|+ 1− r ,

by lemma 2.1, where |`| = ∑
ai(`). We can therefore define the pi of equation 2.4 as

pi(T, `), for T and ` determine the value of pi(Γ) for any compatible Γ.

Lemma 2.13 For any fixed type, T , of coincidence ≤ r, and k1, . . . , kt, let L =
LT,k1,...,kt. For any i ≤ r + 1 we have∑

`∈L
pi(T, `) =

∑
K1,K2,K3

(2d− 1)|K1|(−1)|K2|PK1,K2,K3(k1, . . . , kt) , (2.13)

where the right-hand-side sum is over all partitions of K = {k1, . . . , kt} into three
disjoint sets K1,K2,K3, where

|Kj | =
∑
ks∈Kj

ks ,

and where PK1,K2,K3 are polynomials of degree ≤ 2i whose coefficients are bounded by
(cdr)cr for some absolute constant c.

Proof By equation 2.6 we have that the sum on the left-hand-side of equation 2.13
is ∑

|I|≤i
cI

(
k1 + · · ·+ kt − r

I0

)(
a1(`)− 1

I1

)
. . .

(
ad(`)− 1

Id

)
(2.14)

with |cI | ≤ 8ii!. Let ajl(`) denote the number of πj , π−1
j occurences in el. Since

aj(`) = aj1(`) + . . .+ ajt(`) ,

we can expand equation 2.14 as a sum of (t+ 1)I02I1 . . . 2Id terms of the form

cs

(
t∏
l=1

ksll

) d∏
j=1

t∏
l=1

(ajl(`))
sjl


with coefficients cs bounded by (cdr)cr and with∑

l

sl +
∑
j,l

sj,l ≤ i.

Fix a lettering, and let L denote those ` ∈ L of that lettering. We can write

∑
`∈L

∏
j,l

(ajl(`))
sjl =

t∏
l=1

∑
w∈Irredkl,σl,τl

d∏
j=1

(ajl(w))sjl ,
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with σ1, . . . , σt, τ1, . . . , τt given by the lettering. By corollary 2.12, the above is

=
t∏
l=1

[(2d− 1)klPl(kl) + (−1)klQl(kl) +Rl(kl)] ,

with Pl, Ql, Rl polynomials of degree ≤ 2
∑
l sj,l and coefficients bounded by (cdr)cr

for some absolute constant c. Hence the above is∑
K1,K2,K3

partition {k1,...,kt}

(2d− 1)|K1|(−1)|K2|QK1,K2,K3(k1, . . . , kt) ,

for polynomials QK1,K2,K3 of degree ≤ 2
∑
j,l sj,l with coefficients bounded by (cdr)cr

for some absolute constant c. Summing the above over the ≤ (2d)6r−2 letterings yields
the lemma.

2

Our goal is to sum pi(T, `) over all triples (T, y, `) corresponding to pairs (Γ, w)
with w ∈ Irredk. So far we can estimate∑

`∈L
pi(T, `)

with L = LT,k1,...,kt. We start summing over walks. So fix multiplicitites m1, . . . ,mt,
and let k = k1m1 + · · ·+ktmt. Clearly k is the length of w in any (Γ, w) corresponding
to a (T, y, `) with multiplicity m1, . . . ,mt and weights k1, . . . kt.

Lemma 2.14 For fixed type, T , with t edges and of coincidence ≤ r, fixed multiplic-
ities ml, and i ≤ r + 1 we have for any k ≥ m = m1 + · · · +mt∑

k1,...,kt ≥ 1 with
k1m1+···+ktmt=k

∑
`∈LT,k1,...,kt

pi(T, `) = (2d − 1)k+t−mPi(k) + ε

where ε vanishes if m1 = . . . = mt = 1 and otherwise

|ε| ≤ (2d− 1)(k−m)/2kt+2i(crd+m)cr
2
,

and Pi a polynomial of degree t+ 2i with coefficient bounded by (crd+m)cr
2

for some
absolute constant c.

Proof Applying lemma 2.13 and exchanging summations yields∑
k1,...,kt

∑
`

pi(T, `) =
∑

K1,K2,K3

∑
k1,...,kt ≥ 1 with
k1m1+···+ktmt=k

(2d−1)|K1|(−1)|K2|PK1,K2,K3(k1, . . . , kt) .

Fix a partition, K1,K2,K3. We shall need some sublemmas.
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Sublemma 2.15 For any integer r, integer t ≤ 3r − 1, and polynomial P of degree
≤ r + t, we have for any k ≥ t∑

k1+k2+···+kt=k
ki≥1

P (k1, . . . , kt) = Q(k)

with Q of degree deg(P ) + t− 1 with

|Q| ≤ |P |(cdr)crt ,

where | | for a polynomial denotes the largest absolute value among its coefficients.

Proof We proceed by induction on t. For t = 1 there is nothing to prove. We claim
that if the sublemma holds for t replaced by t−1, then it also holds for t. To see this,
we write

P (k1, . . . , kt) =
deg(P )∑
l=0

P l(k1, . . . , kt−1)klt,

with deg(P l) ≤ deg(P )− l, and |P l| ≤ |P |. Applying the sublemma to each P l we get

∑
k1+k2+···+kt=k

ki≥1

P (k1, . . . , kt) =
deg(P )∑
l=0

k−t+1∑
j=1

Ql(k − j)jl ,

with Ql of degree ≤ deg(P )−l+(t−2) and with coefficients bounded by |P |(cdr)cr(t−1).
For each fixed l, the sum over j on the left-hand-side of the above is clearly a polyno-
mial of degree 1+ l+deg(Ql) ≤ deg(P )+t−1 and coefficients bounded by |P |(cdr)crt,
assuming c is sufficiently large. Summing over l, using deg(P ) ≤ r+ t ≤ 4r−1 proves
the inductive step.

2

Sublemma 2.16 For any m1 = 1,m2, . . . ,mt, partition K1,K2,K3 of {k1, . . . , kt}
with k1 ∈ K1, t ≤ 3r − 1, and polynomial P of degree ≤ r + t, we have for any
k ≥ m = 1 +m2 + · · · +mt∑

k1m1+k2m2+···+ktmt=k
ki≥1

(2d− 1)|K1|(−1)|K2|P (k1, . . . , kt) = (2d − 1)k+t−mQ(k) + ε

(2.15)
where ε vanishes if mi = 1 and ki ∈ K1 for all i, and otherwise

|ε| ≤ (2d− 1)(k−m)/2kdeg(P )+t−1|P |(cdr +m)crt , (2.16)

and with Q of degree deg(P ) + t− 1 with

|Q| ≤ |P |(cdr +m)crt . (2.17)
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Proof We can assume k1, . . . , ks are all in K1, that m1 = . . . = ms = 1, and that
K1 = {k1, . . . , ku} with ms+1, . . . ,mu all greater than 1. Writing

P (k1, . . . , kt) =
deg(P )∑
l=0

P l(k1, . . . , ks)Rl(ks+1, . . . , kt)

with Rl of degree l, by sublemma 2.15 we can write the sum in equation 2.15 as

deg(P )∑
l=0

k−s∑
j=m−s

∑
ks+1ms+1+···+ktmt=j

kl≥1

(2d−1)ks+1+···+ku(−1)|K2|(2d−1)k−jQl(k−j)Rl(ks+1, . . . , kt) .

For each fixed l we write the above sum over j as

k−s∑
j=m−s

( )
=

∞∑
j=m−s

( )
−

∞∑
k−s+1

( )

where ( ) denotes the summand (for j) in the preceding equation. Note that the
number of solutions to ks+1ms+1 + · · ·+ ktmt = j is clearly ≤

(j+t−s−1
t−s−1

)
, and that

ks+1 + · · · + ku ≤ 1
2

(2ks+1 + · · ·+ 2ku)

≤ 1
2

(j −mu+1 − · · · −mt − (ms+1 − 2)ks+1 − · · · − (mu − 2)ku)

≤ 1
2

(j −mu+1 − · · · −mt − (ms+1 − 2)− · · · − (mu − 2))

≤ 1
2

(j −m+ 2(u− s) + s)

≤ 1
2

(j −m− s) + t .

It follows from the identity
∞∑
n=0

(
n

τ

)
ρn =

ρτ+1

(1− ρ)τ

that ∞∑
j=m−s

( )
= (2d − 1)k−mQ̃l(k)

where Q̃ is a polynomial of degree ≤ deg(Ql), and |Q̃l| ≤ |Ql||Rl|(crd + m)crt ≤
|P |(crd+m)crt, and that∣∣∣∣∣∣

∞∑
k−s+1

( )∣∣∣∣∣∣ ≤ (2d− 1)(k−m)/2kdeg(P )+t−s−1|P |(cdr +m)crt.

Summing over l completes the proof.
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2

Sublemma 2.17 For any m1,m2, . . . ,mt, partition K1,K2,K3 of {k1, . . . , kt} with
k1 ∈ K1, t ≤ 3r − 1, and polynomial P of degree ≤ r + t, we have for any k ≥ m =
m1 +m2 + · · ·+mt ∑

k1m1+k2m2+···+ktmt=k
ki≥1

(2d − 1)|K1|(−1)|K2|P (k1, . . . , kt) = ε

where
|ε| ≤ (2d− 1)(k−m)/µkdeg(P )+t−1|P |(cdr +m)crt ,

where µ is the smallest integer among the mi with ki ∈ K1.

Proof We do the same calculation as in the last sublemma, the difference being that
this time we have

k1 + · · ·+ ku ≤
1
µ

(µk1 + · · · + µku) ≤ 1
µ

(j −m) + u

and therefore get the 1/µ factor in the exponent of (2d− 1).

2

To finish the proof of lemma 2.14, we sum over the 3t partitions of {k1, . . . , kt}
into three sets, K1,K2,K3, applying one of the sublemmas (noting that rt ≤ 3r2).

2

Let
Pi,T,~m(k)

denote the polynomial Pi in lemma 2.14, which depends (only) on T and m1, . . . ,mt,
where we use ~m to abbreviate the sequence (m1, . . . ,mt). For an ordered type T and
multiplicities ~m, let W (T ; ~m) be the number of legal walks in T with multiplicities
~m = (m1, . . . ,mt). By lemma 2.6,∑

|~m|=m
W (T ; ~m) ≤ (2r)m

for types of coincidence ≤ r, where |~m| = m1 + . . . + mt. It follows from this and
lemma 2.14 that for any type of coincidence ≤ d− 1 the infinite sum

∞∑
m1=1

· · ·
∞∑

mt=1

W (T ; ~m)(2d− 1)t−mPi,T,~m(k)

converges for each i to a polynomial of degree 2i + t, which we denote fi,T . For
0 ≤ i ≤ d− 2, let

fi(k) =
∑

coin(T )≤i+1

fi+1−coin(T ) , T (k) ,

which is a polynomial in k of degree ≤ 2i+ (3i+ 2) = 5i+ 2, since t ≤ 3i+ 2 for any
T of coincidence ≤ i+ 1.
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Theorem 2.18 Let d and r ≤
√

2d− 1/2 be fixed positive integers. For any fixed
v ∈ {1, . . . , n} we have

E

 ∑
w∈Irredk

v
w→ v

 = 2d(2d−1)k−1
(

1
n
f0(k) +

1
n2

f1(k) + . . .+
1
nr
fr−1(k) + error

)
,

where

error ≤ k2r+2

nr+1
(1 + 2k2re(r+1)k/n) + (2d − 1)−k/2

r−1∑
i=0

(ckid)ci
2

ni+1

and where the fi are polynomials of degree ≤ 5i+ 2 whose coefficients are bounded by
(cdr)cr

2
, where c is an absolute constant (independent of d and r). For any

k ≤ 1
cd3/2

n1/(c
√
d)

we have

error ≤ k4r+2

nr+1
c+ (2d− 1)−k/2

(ckd)c

n
.

Proof By virtue of the one-to-one correspondence between pairs (Γ, w) and triples
(T, y, `) we have

E

 ∑
w∈Irredk

i
w→ i

 =
1
n

∑
T

∑
m1,...,mt

W (T ; ~m)
∑

k1,...,kt ≥ 1 with
k1m1+···+ktmt=k

∑
`∈LT,k1,...,kt

Pr (T, `)

 ,

where Pr (), as with pi, extends from a function on general forms, Γ, to a function
on pairs (T, `). The probability that the walk along v starting at i has more than r
coincidneces is no more than the number of ways of choosing r + 1 points of the k
unknown points times the probability that each of these points is indeed a coincidence.
Thus we can replace the summation over all types, T , above, with a summation over
all types T of coincidence ≤ r while incurring an error of no more than

2d(2d − 1)k−1

(
k

r + 1

)(
k

n− k

)r+1

≤ 2d(2d − 1)k−1k
2r+2

nr+1

if k ≤ n/2. Obviously the second summation has non-zero terms only when m =
m1 + · · · +mt is ≤ k; we shall restrict the second sum to being over such m.

The total number of Pr (T, `)’s occuring in the above quadruple summation is the
same as the total number of (Γ, w) pairs (and less when we restrict ourselves to types
of coincidence ≤ r − 1). For each w ∈ Irredk there are no more than

r∑
j=0

(
k

j

)
kj ≤ 2k2r
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compatible Γ’s of coincidence ≤ r, because Γ there is at most one Γ for any j ≤ r
specified points of coincidence (among the k unknown points t1, . . . , tk of the walk)
once we specify at which of the previous vertices each of the j coincidences arrive. By
lemma 2.7 we have for each T of coincidence ≤ r

Pr (T, `) =
p0

ncoin(T )−1
+

p1

ncoin(T )
+ · · · + pr−1

nr−1
+

ε

nr
,

where ε is bounded by
e(r+1)k/nk2r+2.

It follows that

1
n

∑
coin(T )≤r

∑
m≤k

W (T ; ~m)
∑
~k,`

Pr (T, `) =
1
n

(
f̃0(k) +

f̃1(k)
n

+ . . .+
f̃r−1(k)
nr−1

+
δ

nr

)
(2.18)

(we have abbreviated the inner two summations by
∑
~k,`

) where

δ ≤ k2r+2(1 + 2k2re(r+1)k/n) , (2.19)

and
f̃i(k) =

∑
coin(T )≤i+1

∑
|~m|≤k

W (T ; ~m)
∑
~k,`

pi+1−coin(T )(T, `) .

We claim that f̃i(k) do not differ much from the infinite sum

fi(k) =
∑

coin(T )≤i+1

∑
~m

W (T ; ~m)(2d − 1)t−mPi+1−coin(T ),T,~m(k) . (2.20)

By lemma 2.14 we have for any type of coincidence ≤ i+ 1, for i ≤ r − 1,∣∣∣∣∣∣∣(2d− 1)t−mPi+1−coin(T ),T,~m(k)−
∑
~k,`

pi+1−coin(T )(T, `)

∣∣∣∣∣∣∣ ≤ (2d−1)(k−m)/2k(3(i+1)−2)+2(i+1)(crd+m)ci
2
.

Since there are less than (2i+ 2)6i+5 types of coincidnece ≤ i+ 1, and since for each
such type there are ≤ (2i+ 2)m ≤ (2d− 1)m/2 legal walks with |~m| = m, we have

∑
coin(T )≤i+1

∑
m≤k

W (T, ~m)

∣∣∣∣∣∣(2d− 1)t−mPi+1−coin(T ),T,~m(k) −
∑
kl

∑
`

pi(T, `)

∣∣∣∣∣∣ ≤ (2d−1)k/2(ckid)ci
2
.

(2.21)
It remains to estimate∣∣∣∣∣∣fi(k)−

∑
coin(T )≤i+1

∑
|~m|≤k

W (T, ~m)(2d − 1)t−mPi+1−coin(T ),T (k)

∣∣∣∣∣∣ ≤∑
coin(T )≤i+1

∑
|~m|>k

W (T, |~m|)(2d − 1)t−m
∣∣∣Pi+1−coin(T ),T (k)

∣∣∣ . (2.22)
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By lemma 2.14, each Pi,T,~m has degree ≤ t + 2i, and coefficients bounded by (cid +
m)ci

2
. Thus we have ∣∣∣Pi+1−coin(T ),T,~m(k)

∣∣∣ ≤ kt+2i(cid +m)ci
2

and thus for a type, T , of coincidence ≤ i + 1 we have that the expression in equa-
tion 2.22 is bounded by

k5i+2(2d − 1)3i+2
∞∑

m=k+1

(
2i+ 2
2d− 1

)m
(cid +m)ci

2 ≤ (ckid)ci
2
(

2i+ 2
2d− 1

)k
(for i ≤ d − 2). Combining the above with equations 2.18, 2.19, and 2.21 yields the
first estimate on the error term. For

k ≤ 1
c′d3/2

n1/(c′
√
d) ,

assuming i ≤
√

2d− 1/2, the sum

r−1∑
i=0

(ckid)ci
2

ni+1

is clearly bounded by the first term. Finally, fi’s coefficients are bounded by

(2i+ 2)6i+5
∞∑
m=1

(cid+m)ci
2
(

2i+ 2
2d− 1

)m
≤ (c′id)c

′i2

(for i ≤ d− 2).

2

3 Consequences of the Expansion

We start by computing f0, f1, . . . in theorem 2.18. Without too much work, one can
use methods akin to those of section 2 to argue that f0(k) = 1 and if f1(k) is non-
zero, then its leading coefficient is negative (which is as good as proving f1(k) = 0
as far as eigenvalue estimates are concerned). Direct arguments for other fl’s seem
harder to come by. We will argue by using previously known facts about the second
eigenvalue, which will give the desired values for the fl’s. These values for fl will in
turn give much sharper information on the second eigenvalues, as we will show later
in this section. We warn the reader that other literature on this subject often work
with d regular, not 2d regular, graphs; to maintain consistency when quoting results
or using techniques from previous work, we will sometimes state theorems in terms
of d regular graphs.
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Theorem 3.1 For every d > 2 there is a constant α > 0 such that for a random
graph G ∈ Gn,2d we have

Pr {|λ2(G)| ≤ 2d− α} = 1− 1
nd−1

+O

(
1

n2d−2

)
,

Pr {λ2(G) = 2d} =
1

nd−1
+O

(
1

n2d−2

)
.

Proof A graph, G, with n vertices is said to be a γ-magnifier if for all subsets of
vertices, A, of size ≤ n/2 we have

|Γ(A)−A| ≥ γ|A|,

where Γ(A) denotes those vertices connected to some member of A by an edge. It is
known that any d regular γ-magnifier has

λ2(G) ≤ d− γ2

4 + 2γ2

(see [Alo86]). We say that G is a γ-expander if for all subsets of vertices, A, of size
≤ n/2 we have

|Γ(A)| ≥ (1 + γ)|A|.
A standard counting argument gives the following.

Lemma 3.2 G ∈ Gn,2d is not a γ-expander with probability

≤
n/2∑
m=1

(
n

m

)(
n

b(1 + γ)mc

)(
m+ bmγc

n

)md
,

and more precisely

≤ 1
nd−1

+O

(
1

n2d−2

)
+

n/2∑
m=3

(
n

m

)(
n

b(1 + γ)mc

)(
m+ bmγc

n

)md
,

for γ < 1/3.

Proof For fixed subsets of V , A and B, we have

Pr {Γ(A) ⊂ B} ≤ Pr {πi(a) ∈ B ∀a ∈ A, ∀i ∈ {1, . . . , d}}

≤
( |B|
n

|B| − 1
n− 1

. . .
|B| − |A|+ 1
n− |A|+ 1

)d
≤
( |B|
n

)d|A|
.

If G is not a γ-expander, then there exist some m ∈ {1, . . . , n/2}, |A| = m, and
|B| = b(1 + γ)mc with Γ(A) ⊂ B. This yields the first estimate. To refine this
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estimate, notice that the bound given for Pr {Γ(A) ⊂ B} is only tight when A = B.
Indeed, if A and B are disjoint, then for Γ(A) to be contained in B we need both πi and
π−1
i to map A into B for each πi, which roughly doubles the amount of conditioning

on each πi. In particular, for |A| = |B| = 1, A 6= B we have

Pr {Γ(A) ⊂ B} ≤
(

1
n(n− 1)

)d
,

and a similar analysis for the case |A| = 2 and |A ∩ B| = 1 or 0, giving the second
estimate.

2

Assuming γ < 1/3 and using the estimate
(n
m

)
≤ (ne/m)m we can bound the

probability that G ∈ Gn,2d is not a γ-expander by

1
nd−1

+O

(
1

n2d−2

)
+

n/2∑
m=3

(
m

n

)m(d−2)(
(1 + γ)2d+1+γe2+γ

)m
=

1
nd−1

+O

(
1

n2d−2

)
if γ is sufficiently close to 0 and d > 2. If G is a γ-expander, then clearly G2, the
graph whose adjacency matrix is the square of G’s, is also a γ-expander, and thus
also a γ-magnifier. Therefore

(λ2(G))2 ≤ 4d2 − γ2

4 + 2γ2

with probability at least

1− 1
nd−1

+O

(
1

n2d−2

)
.

On the other hand, λ2(G) = d if G has an isolated vertex. By the inclusion-
exclusion principle, this happens with probability

≤ n
(

1
nd

)
and

≥ n
(

1
nd

)
−
(
n

2

)(
1
nd

)2

.

2

Let G = (V,E) be an undirected d-regular graph. By a non-backtracking walk in
G we mean a walk that at no point in the walk traverses an edge and then on the next
step traverses the same edge in the reverse direction. For vertices v, w, and integer
k, let Fk(v,w) be the number of non-backtracking walks of length k from v to w. Let

WG(k) =
∑
v∈V

Fk(v, v) .

Theorem 2.18 gives us the expected value of WG(k) for a random G ∈ Gn,2d. In the
spirit of [LPS86] we have:
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Lemma 3.3 Let the eigenvalues of G’s adjacency matrix be λ1, · · · , λn. Then

WG(k) =
n∑
i=1

qk(λi) ,

where qk is a polynomial of degree k. It is given by

qk(2
√
d− 1 cos θ) = (

√
d− 1)k

(
2

d− 1
cos kθ +

d− 2
d− 1

sin(k + 1)θ
sin θ

)
.

Proof Regarding Fk as an n × n matrix, we easily see that F0 = I, F1 = A, where
A is the adjacency matrix of G,

F2 = A2 − dI ,

and for any t ≥ 3 we have

Ft = AFt−1 − (d− 1)Ft−2 .

It follows that
Fk = qk(A)

where qk is some k degree polynomial independent of A, and that

WG(k) = Trace (Fk) = Trace (qk(A)) =
n∑
i=1

qk(λi) .

One can solve for qk explicitly by noting that for fixed λ, qk = qk(λ) satisfies the
simple recurrence

qk = λqk−1 − (d− 1)qk−2 .

One therefore has
qk = c1(r1)k + c2(r2)k

for some c1, c2, where r1, r2 are the roots of

r2 − λr + (d− 1) = 0 .

One can directly solve for r1, r2, c1, c2, but it is easier to substitute λ = 2
√
d− 1 cos θ.

One gets
r1,2 =

√
d− 1e±iθ ,

and then after a few more calculations and simplifications one gets

qk(2
√
d− 1 cos θ) = (

√
d− 1)k

(
2

d− 1
cos kθ +

d− 2
d− 1

sin(k + 1)θ
sin θ

)
.

2



3 CONSEQUENCES OF THE EXPANSION 29

The qk(λ)’s are quite easy to use. For example, if λ = d, the first eigenvalue, then
clearly

qk(d) = d(d− 1)k−1 .

For |λ| ≤ 2
√
d− 1 one has λ = 2

√
d− 1 cos θ for some real θ, and therefore

|qk(λ)| ≤ (
√
d− 1)k(k + 2) (3.1)

since | sin(k + 1)θ/ sin θ| is always ≤ k + 1. Otherwise, say for λ > 2
√
d− 1, one can

rewrite the identity in lemma 3.3 as

qk(2
√
d− 1 coshx) = (

√
d− 1)k

(
2

d− 1
cosh kx+

d− 2
d− 1

sinh(k + 1)x
sinhx

)
and solve λ = 2

√
d− 1 coshx. For λ < −2

√
d− 1 one solves for λ = −2

√
d− 1 coshx

and proceeds similarly. For |λ| near 2
√
d− 1, sin θ or sinhx is very close to 0, and it

is convenient to write

sin(k + 1)θ
sin θ

= cos kθ + cos θ cos(k − 1)θ + cos2 θ cos(k − 2)θ + · · ·+ cosk θ

for estimating. In particular, since as x ≥ 0 increases λ = 2
√
d− 1 cosh x increases,

we have that for all λ with 2
√
d− 1 ≤ λ ≤ d− α,

x = cosh−1
(

λ

2
√
d− 1

)
must be

≤ cosh−1
(

d

2
√
d− 1

)
− ε

for some positive ε. Doing the same for λ negative we therefore get

Lemma 3.4 For any α > 0 there is a δ > 0 such that if |λ| ≤ d− α, then

|qk(λ)| ≤ (k + 2)(d − 1− δ)k .

Proof Using
cosh(x+ y) = cosh x cosh y + sinhx sinh y ,

it follows that

cosh kx ≥ cosh x cosh(k − 1)x ≥ cosh2 x cosh(k − 2)x ≥ . . .

Also, cosh kx ≤ ekx ≤ (d−1−δ)k for all x corresponding to |λ| ≤ d−α, |λ| ≥ 2
√
d− 1.

For |λ| ≤ 2
√
d− 1, the lemma follows from equation 3.1

2
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Theorem 3.5 In theorem 2.18, with r ≤ b
√

2d− 1/2c, we have f0(k) = 1 and
fj(k) = 0 for j ≥ 1, if d− 2 >

√
2d− 1/2 (i.e. d ≥ 4).

Proof By theorem 3.1 we have that (remember, the degree is now 2d)

E

 ∑
w∈Irredk

v
w→ v

 =

(
1− 1

nd−1
+O

(
1

n2d−2

))(
2d(2d − 1)k−1 +O((k + 2)(2d − 1− δ)k)

)
+

(
1

nd−1
+O

(
1

n2d−2

))
O(n2d(2d− 1)k−1) .

Taking k even and = b(log n)2c or = b(log n)2c+ 1, letting n→∞, and noticing that
(2d− 1− δ)k/(2d− 1)k and (2d− 1)−k/2 are less than any polynomial in n as n→∞
yields f0(k) = 1 and fj(k) = 0 for any j ≥ 1.

2

To restate the results so far:

Corollary 3.6 For any fixed v, k ≥ 1, and d− 2 >
√

2d− 1/2 (i.e. d ≥ 4) we have

E

 ∑
w∈Irredk

v
w→ v

 = 2d(2d − 1)k−1
(

1
n

+ errorn,k
)
,

where

errorn,k ≤ (ckd)c
(

k2
√

2d

n1+b
√

2d−1/2c
+

(2d − 1)−k/2

n

)
.

2

Now we use this corollary to estimate the expected sum of the k-th powers of the
eigenvalues. Any word in Πk can be reduced by repeatedly cancelling all consecutive
occurences of π, π−1 in the word, until we get an irreducible word; this irreducible
word is independent of how the reducing was done. Notice that

1
(2d)k

E

 ∑
w∈Πk

v
w→ v

 = pk,0 +
k∑
s=1

pk,s
1

2d(2d − 1)s−1
E

 ∑
w∈Irreds

v
w→ v

 ,

where pk,s is the probability that a random word in Πk reduces to an irreducible word
of size s. Since

∑
s pk,s = 1, we have

1
(2d)k

∑
v

E

 ∑
w∈Πk

v
w→ v

 = 1 + (n− 1)pk,0 +
k∑
s=1

npk,s errorn,s
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and therefore

E

{
n∑
i=2

λki

}
= (2d)k(n− 1)pk,0 + (2d)k

k∑
s=1

npk,s errorn,s . (3.2)

To estimate the above, first notice that pk,s = 0 if k and s have different parity. In
[BS87], the following estimate is given:

Lemma 3.7

p2k,2s ≤
2s+ 1
2k + 1

(
2k + 1
k − s

)(
1
2d

)k−s(
1− 1

2d

)2s−1

Proof See [BS87]; for an exact formula and sharper bounds, see [McK81].

2

Incidentally, from the proof of the above lemma in [BS87] it is clear that also

p2k,0 ≥
1

2k + 1

(
2k + 1
k

)
(2d − 1)k

(2d)2k
.

It follows that for any graph of degree 2d,

n∑
i=1

λ2k
i ≥ (2d)2k(n− 1)pk,0 ≈ (n− 1)22k(2d − 1)k,

so that taking 2k slightly less than 2 logd n yields the lower bound mentioned in the
introduction,

|λ2| ≥ 2
√

2d− 1 +O

(
1

logd n

)
.

Now we take k = 2blog n b
√

2d− 1/2c/ log dc, so that k is even, and calculate
using the simplified bound

p2k,2s ≤ 22k
(

1
2d

)k−s
.

It is easy to see that the dominant terms of the summation over s in equation 3.2 are
s = 1 and s = k, and therefore

E

{
n∑
i=2

λki

}
≤ n1+ log 2

log d (ckd)ck2
√

2d

(
2
√

2d

√
2d

2d− 1

)k
.

Taking k-th roots, applying Hölder’s (or Jensen’s) inequality, and noticing that(
n1+ log 2

log d

)1/k

= 1 +
log d√

2d
+O

(
1√
d

)
,
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that
(ckd)c/kk2

√
2d/k = 1 +O

(
log d log log n

log n

)
,

and that
k ≤ 1

cd3/2
n

1

c
√
d

for
log n

log log n
≥ c′
√
d

yields:

Theorem 3.8 For G ∈ Gn,2d we have

E {|λ2(G)|} ≤ 2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

)

(with an absolute constant in the O( ) notation), and more generally

E {|λ2(G)|m} ≤
(

2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

))m

for any m ≤ 2blog n b
√

2d− 1/2c/ log dc.

2

As a corollary we also get:

Theorem 3.9 For any β > 1 we have

|λ2(G)| ≥
(

2
√

2d− 1

(
1 +

log d√
2d

+O

(
1√
d

))
+O

(
d3/2 log log n

log n

))
β

with probability

≤ β2

n2b
√

2d−1/2c log β/ log d
.

4 Concluding Remarks

An interesting question would be to see if an expansion in theorem 2.18 exists for
r >
√

2d− 1/2. In section 2 we defined fi(k) really for any i such that

∞∑
m=0

(
2i+ 2
2d− 1

)m
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converges, which is to say any i ≤ d− 2. We only used fi(k) for i ≤ (
√

2d− 1/2)− 1,
because in equation 2.21, we needed to use

(2i+ 2)m ≤ (2d − 1)m/2

in order to get a reasonable bound on the error term. If there were some way to bound
this error term by a reasonable quantity for larger i, one could extend the expansion,
with the n−j coefficient being fj−1(k). Whether or not fi(k) for i ≥ (

√
2d− 1/2)− 1

is involved in an asymptotic expansion, it might be interesting to evaluate them, since
they seem to be a fairly naturally defined quantity.

If one were able to get an expansion up to r-th order for r close to d, one might
notice Gn,2d’s weakness, that according to theorem 3.1 a graph in Gn,2d has a d as
a multiple eigenvalue with probability on the order of n−(d−1). From the arguments
in section 3, it would follow that the expansion, if it existed, would fail to vanish by
the n−d+1 term. However, one might hope for a better second eigenvalue estimate
through various approaches. First of all, one might be able to find the graphs which
give the non-vanishing terms, such as graphs with isolated vertices for the n−d+1

term, and thus show that upon removing them (which does not affect the probability
measure very much) one has a better moment estimate. Secondly, one might do
better with a different probability distribution, say Hn,2d, which is constructed like
Gn,2d but only allows permutations, π, which consist of one cycle. There are (n− 1)!
such permutations, and once a values of such a π have been determined (which do
not already give π a cycle), there are

(n− 1)!
(n− 1)(n − 2) . . . (n− a)

ways of completing π to be a permutation of one cycle. It follows that over Hn,2d one
has

Pr (Γ) = n(n− 1) . . . (n− |VΓ|+ 1)
d∏
j=1

1
(n− 1)(n − 2) . . .(n− aj(Γ))

,

and therefore the asymptotic expansion and second eigenvalue theorems hold forHn,2d
as well. However, inHn,2d one can never have an isolated vertex or similar phenomena,
and so one would have a much better theorem 3.1 for Hn,2d, and a possibility of having
a further than d-th order expansion for which all lower order terms vanish.
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