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Abstract

In a previous paper we have suggested a number of ideas to attack
circuit size complexity with cohomology. As a simple example, we
take circuits that can only compute the AND of two inputs, which
essentially reduces to SET COVER. We show a very special case of
the cohomological approach (one particular free category, using injec-
tive and superskyscraper sheaves) gives the linear programming bound
coming from the relaxation of the standard integer programming re-
formulation of SET COVER.

1 Introduction

In [Fri05] we introduced several techniques that may prove useful in using co-
homology (on Grothendieck topologies) for obtaining lower bounds on circuit
complexity. In this paper we simplify this problem to complexity involving
only conjunctions of Boolean functions. We then show that a simple exam-
ple of a Grothendieck topology, sheaves, and open sets lead to the “linear
programming” bound. Furthermore we improve a bound in [Fri05].
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Let S be a set, and denote by BS = {0, 1}S the collection of functions
from S to B = {0, 1} (viewing 1 as TRUE and 0 as FALSE). By a formal
AND measure we mean a function, h, from BS to the non-negative reals such
that for all f, g ∈ BS we have

h(f ∧ g) ≤ h(f) + h(g)

(compare the notion of a formal complexity measure, e.g., see [Weg87]). Given
a subset S1 = {f1, . . . , fr}, let size(f) be the minimum number of elements
of S1 whose conjunction is f ; we define size(f) to be infinite if f cannot be
expressed as such a conjuction. Equivalently size(f) is the size of the smallest
formula computing f via conjunctions of elements of S1. By induction on
“size” we see that for any formal AND measure, h, we have

size(f) ≥ h(f)/M, where M = maxi h(fi).

If h also satisfies
h(f) = h(¬f),

then similarly we have an h(f)/M lower bound on the size of a formula as
before, but where the operations are either conjunctions or the negation of a
conjuction; then log2(h(f)/M) would bound the formula (or circuit) depth.

Given S and f1, . . . , fr, determining size(f) is NP-complete. It can be
approximated (to within O(log r)) by a linear program. We shall show that
the “virtual zero extensions” described in [Fri05], just in the special case of
a free category with sheaves with no non-trivial higher cohomology, give this
linear programming bound (or more precisely its dual). We finish by recalling
the notion of virtual zero extensions.

We sketch the ideas, referring to [Fri05] for the details. Let C be a finite
category, and endow it with the grossière topology (meaning that a sheaf
is the same thing as a presheaf). Let F, G sheaves of finite dimensional Q-
vector spaces on C, and let U be an open set of C (i.e., a sieve), and Z be
a closed set. We say that a sheaf, H, is a virtual GU,Z if there is an exact
sequence,

0 → GU → GU∩Z ⊕ H → GZ → 0,

where the maps GU → GU∩Z and GU∩Z → GZ are the usual maps (i.e.,
the identity on the intersection of the supports), and where GA denotes G
restricted to A and extended by zero outside A. See [Fri05] for conditions
on the existence of H; for a free category (see [Fri05]) H always exists. The
following theorem is an improvement over the bound in [Fri05].
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Theorem 1.1 In the situation above, with H a virtual GU,Z, we have

cc(F, GU∩Z) ≤ cc(F, G) + cc(F, GU) + cc(F, GZ),

where cc(A, B) is the sum of the dimensions of Exti
C(A, B) over all non-

negative i, and Z is the complement of Z.

We shall prove this theorem in Section 3. Now assume that we have a map
f 7→ Uf from BS to open sets of C such that Uf∧g = Uf ∩ Ug. Then

h(f) = cc(F, GUf
)

is a formal AND measure, provided that cc(F, G) = 0.
The idea to test the ideas of [Fri05] on AND’s alone arose in conversa-

tions with Les Valiant. We wish to thank him, as well as Janos Simon, for
discussions.

2 AND complexity

Given S and S1 ⊂ BS, determining size(f) is NP-complete, as it is almost a
reformulation of SET COVER (see [Vaz01], for example, for SET COVER);
indeed, to determine how many S1 elements we need to obtain f , we may
assume f ≤ fi for all i, and then the question is how many f−1

i (0) are
required to cover f−1(0). The point of this paper is to show that the dual of
the usual “linear programming” lower bound on size/depth complexity arises
as a very special (and degenerate) case of the sheaf bound. Specifically, the
size complexity is given by the integer program

min
∑

i∈R

µi, subject to

∑

i∈R

µi(1 − fi(s)) ≥ 1, ∀s ∈ f−1(0)

µi = 0, 1 i ∈ R,

where R is the set of i with f ≤ fi. A lower bound to this program is
given by the “relaxed” linear program where the µi are non-negative reals.
The gap between the integer and linear program is known to be as high as
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O(log r) in certain cases, and never higher (see [Vaz01]). Equivalent to the
linear program is its dual,

max
∑

s∈f−1(0)

αs, subject to

∑

s∈f−1(0)

αs(1 − fi(s)) ≤ 1, ∀i ∈ R

αs ≥ 0 ∀s ∈ S

Say that s ∈ f−1(0) demands fi if fi(s) = 0 and fj(s) = 1 for j 6= i. If
for each i = 1, . . . , r there is an si that demands fi, then we take αs to be 1
or 0 according to whether or not s is one of the si, and then we see that the
LP-bound is exact, i.e., gives the true size complexity (namely r).

For example, consider the case where S = {0, 1}n and the size one func-
tions are {0, 1, x1,¬x1, . . . ,¬xn}; given f , we discard 0, 1 and all size one
functions not ≥ f ; we see that either f is the conjunction of the functions
leftover, and the LP-bound is exact, or f is of infinite size complexity, and
the LP-bound is also infinite (the primal is infeasible, and for the dual there
is an s with f(s) = 0 but fi(s) = 1 for all leftover fi; then αs can be taken
arbitrarily large).

3 Improved Inequality

In this section we prove Theorem 1.1.
The short exact sequence

0 → GU∩Z → GU
β
−→ GU∩Z → 0

gives a long exact sequence, yielding

dim(Exti(F, GU∩Z)) = dim(Coker βi−1) + dim(Ker βi), (1)

where βi : Exti(F, GU) → Exti(F, GU∩Z) are the maps arising from β. It
suffices to bound the right-hand-side of equation (1).

The virtual zero extension gives a short sequence

0 → GU
β⊕γ
−−→ GU∩Z ⊕ H → GZ → 0.
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Letting γi be, as before, the map γ in Exti(F, · ) gives

dim(Exti(F, GZ)) = dim(Coker (βi ⊕ γi)) + dim(Ker (βi+1 ⊕ γi+1)).

Since Coker βi injects into Coker (βi ⊕ γi), we have
∑

dim(Coker βi) ≤
∑

dim(Coker (βi ⊕ γi)) ≤ cc(F, GZ).

And clearly
∑

dim(Ker βi) ≤
∑

dim(domain(βi)) =
∑

dim(Exti(F, GU)) = cc(F, GU).

Summing in equation (1) yields

cc(F, GU∩Z) ≤ cc(F, GZ) + cc(F, GU).

We now finish the proof using

cc(F, GZ) ≤ cc(F, G) + cc(F, GZ)

that follows from the exact sequence

0 → GZ → G → GZ → 0.

2

4 A Trivial Bound

In this section we use the notation of [Fri05]: if C is a category and P ∈
Ob (C), then kP is the inclusion ∆0 → C where ∆0 is the category with
one object, 0, and one morphism, and kP (0) = P ; also, if u : C → C ′ is a
functor, u∗ is the pullback and u∗ (respectively u!) is its right (respectively
left) adjoint (this notation comes [sga72], Exposé I, Section 5.1).

Lemma 4.1 Let C be the free category on the graph, G. For a closed inclu-
sion i : Z → C, let HomZ(P, Q) be the set of all paths in G all of whose ver-
tices except the last lie outside Z; in particular, if P ∈ Z, then HomZ(P, Q)
is empty if Q 6= P and consists of a single element (the zero length path about
P ) if Q = P . For any P ∈ Ob (C) we have that

i∗i
∗kP∗Q '

⊕

Q∈Z

(kQ∗Q)HomZ(P,Q). (2)
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Proof Let FL, FR denote the sheaves on the left- and right-hand-side of
equation (2). First note that i∗i

∗ is simply restriction to Z followed by
extension by 0, and FR clearly vanishes outside Z. So it suffices to give
anisomorphism FL(X) ' FR(X) for each X ∈ Z that is functorial in X.

We have that (kP∗Q)(X) is Hom(P, X) copies of Q, and Hom(P, X) is
the number of paths in G from P to X. For each path in G from P to X,
once a vertex in the path, Q, falls in Z, all subsequent vertices remain in Z.
Hence we have a set theoretic bijection

bX :
⋃

Q

HomZ(P, Q) × Hom(Q, X) → Hom(P, X)

for each X. Furthermore this bijection is functorial in X, in that if φ : X1 →
X2 is a morphism, then we have that φbX1

= bX2
φ, the second φ acting on

each Hom(Q, X1). This gives the desired functorial isomorphism FL(X) '
FR(X).

2

Now let S be a finite set, and let MS be the graph whose vertices are
the functions S → {0, 1} with one or zero edges from f to g according to
whether or not f ≤ g and f(s) = g(s) for all but exactly one s ∈ S. Let
C be the free graph on MS. We call MS the monotone S-cube, and C the
S-path category. For f ∈ Ob (C), let Uf be the smallest open set containing
f , i.e., the set of all objects no greater than f . By a subcube of C be mean a
collection of objects whose values at a subset of S are fixed.

Consider the model, f 7→ (C, F, GUf
), where G = kP∗Q and where F and

P are to be specified later. Since C is free, virtual zero extensions always
exist. If Zf denotes the complement of Uf , we have

cc(f) =
∑

Q∈Zf

(dim F (Q)) |HomZf
(P, Q)|.

Of course, the dim F (Q) can be arbitrary non-negative integers by taking
F to be a sum of superskyscraper sheaves, i.e., a sheaf, F , where for each
morphism φ ∈ C we have Fφ is the zero morphism.

We claim this recovers the linear programming bound. Indeed, let P = 0,
and let F vanish outside of the points δs where s ∈ S and δs is the Dirac
delta function at s. Then cc(F, G) = 0, since F (0) = 0, and

cc(g) =
∑

s

As(1 − g(s)),
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where As is the dimension of F (δs). So we get

size(f) ≥
∑

s

As/M,

for any M with ∑

s

As(1 − fi(s)) ≤ M ;

this is just the linear programming bound (restricted to αs = As/M ratio-
nal, αs as in Section 2). Furthermore, it is not hard to see that varying
G injective and F arbitrary and taking linear combinations we cannot get
anything better than the linear programming bound. Indeed, since f = 0,
we have cc(f) = 0 unless P = 0; so any P 6= 0 terms can be discarded in an
optimal bound. Similarly, if P = Q, then cc(F, G) is already 1 and cc(f) is
no greater, so such terms can be discarded (since the bound size(f) ≥ 1 can
always be achieved by the linear program). Finally, if P = 0 and Q 6= 0 and
Q 6= δS, then

cc(f) =
∑

(A,B)∈ES

NP,Q(A, B)ccA,B(f),

where ES are the edges of GS, NP,Q(A, B) is the number of paths from P to Q
in GS that pass through the edge (A, B), and ccA,B denotes the cohomological
complexity when P = A and F is zero outside B and Q on B. In the above
displayed sum we may discard the A with A 6= 0, as mentioned before, and
we are left with a cohomological complexity as before.

The bound we get on size(f) can, of course, be derived without cohomol-
ogy. Indeed, consider any formal function

h(f) =
∑

φ∈HomZf
(P, · )

A(φ), (3)

where A is a any non-negative function. Then h is a formal AND measure,
since HomZf∧g

⊂ HomZf
∪ HomZg

.
We pause for a mild generalization of this notion. By a conjuctively

closed family we mean an C ⊂ BS such that f, g ∈ C implies f ∧ g ∈ C;
by a conjunctively closed complement we mean the complement in BS of a
conjunctively closed family, or equivalently a B ⊂ BS such that f ∧ g ∈
B implies at least one of f, g lies in B. For such a B, we have χB, the
characteristic function of B is a formal AND measure, and therefore so is
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any non-negative linear combination of such characteristic functions; this is
an essential generalization of the h in equation (3).

Let us mention that taking G = (kP∗Q)U for an open set, U , yields such
a bound; indeed, it is not hard to see that we get cc(f) as in equation (3)
with A(φ) = β(tφ) with

β(Q) = dim F (Q) + dim V (Q) − 2 rank(M),

where
V (Q) =

⊕

χ∈Hom
U

(Q, · )

F (tχ),

and M : V (Q) → F (Q) is the map whose χ component is F (χ); clearly β
(and therefore A) is non-negative.

References

[Fri05] Joel Friedman. Cohomology of grothendieck
topologies and lower bounds in boolean complex-
ity. 2005. http://www.math.ubc.ca/~jf, also
http://arxiv.org/abs/cs/0512008, to appear.
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