# On the Bit Extraction Problem 

Joel Friedman*<br>Department of Computer Science<br>Princeton University<br>Princeton, NJ 08544


#### Abstract

Consider a coloring of the n-dimensional Boolean cube with $c=2^{s}$ colors in such a way that every $k$ dimensional subcube is equicolored, i.e. each color occurs the same number of times. We show that for such a coloring we necessarily have $(k-1) / n \geq \theta_{c}=$ $(c / 2-1) /(c-1)$. This resolves the "bit extraction" or "t-resilient functions" problem (also a special case of the "privacy amplification" problem) in many cases, such as $c-1 \mid n$, proving that XOR type colorings are optimal, and always resolves this question to within $c / 4$ in determining the optimal value of $k$ (for any fixed $n$ and $c$ ). We also study the problem of finding almost equicolored colorings when $(k-1) / n<\theta_{c}$, and of classifying all optimal colorings.


## 1 Introduction

The bit extraction problem of [Vaz85], aka $t$ resilient functions problem (see [ $\left.\mathrm{CFG}^{+} 85\right]$ ), aka a special case of the privacy amplification problem (see [BBR88],,[Bra89]) is equivalent to the following coloring problem. The vertices of the Boolean cube, $\mathbf{B}^{n}=\{-1,1\}^{n}$ are to be colored with $c=2^{s}$ colors such that every $k$-dimensional subcube is equicolored. Given $n$ and $c$, what is the smallest value of $k$ for which this possible? Here, by a $k$-dimensional subcube we mean a subset of $\mathbf{B}^{n}$ determined by fixing the values of some $n-k$ coordinates on $\mathbf{B}^{n}$; we denote the set of all such subcubes by $\mathcal{H}_{k}$. By equicolored we mean that every color appears the same number of times in the subcube, i.e. $2^{k} / c$ times.

To fix ideas, we refer to such a coloring as a $(c ; n, k)$ coloring and write $\kappa(c, n)$ for the smallest value of $k$ achievable for a given $n$ and $c$. In this paper we are primarily interested in viewing $c$ as small or fixed, study-

[^0]ing $\kappa$ as a function of $n$. We will study this problem and the problem of constructing colorings which are approximately equicolorable.

To elaborate on the context in which the problem arises, consider $n$ boolean variables, $X=\left\{x_{1}, \ldots, x_{n}\right\}$, whose values are set by the following process. An adversary fixes some subset of the variables, $T \subset X$, to specific values, neither the values nor $T$ being knowing to us; then the remaining variables are randomly set to boolean values, independently and uniformly. Knowing only the size of $T, t=|T|$, we wish to extract $s$ unbiased bits from $X$ for $s$ as large as possible; i.e. we wish to find a function $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{s}$ such that for any setting of any $t$ of the variables of $X$ in the above process, our $f$ takes on each value in $\mathbf{B}^{s}$ with probability $1 / 2^{s}$. For example, to extract one unbiased bit for any $T$ of size $\leq n-1$, we can take $f=x_{1} \oplus \cdots \oplus x_{n}$, where $\oplus$ denotes the XOR (exclusive-OR); as long as there is one bit which is not set by the adversary, this $f$ will be unbiased. While the obvious lower bound $s \leq n-t$ is achieved in extracting $s=1$ bit, one cannot in general attain $s=n-t$. In $\left[\mathrm{CFG}^{+} 85\right]$ it proven that to extract $s=2$ bits requires $t<2 n / 3$ (we assume $3 \mid n$ for simplicity); one can achieve this taking $f=\left(f_{1}, f_{2}\right)$, with $f_{1}$ the XOR of the first $2 n / 3$ of the variables, and $f_{2}$ that of the last $2 n / 3$ of them. The bit extraction problem is equivalent to our coloring problem since constructing an $f$ as above gives a ( $2^{s} ; n, k$ ) coloring with $k=n-t$, and vice versa (and thus the name " $t$-resilent function").

This coloring problem also arises in a cryptographic context (as in [BBR88],[Bra89]): player A communicates to player B via a channel of $n$ bits, $x_{1}, \ldots, x_{n}$, but there is a spy who is able to see some $t$ of the $n$ bits, $A$ and $B$ not knowing which bits the spy can see. A and B would like the spy to obtain no information about the true message, say a message of $s<n$ bits. In other words, A must takes a message of $s$ bits, encode this to a message of $n$ bits, using some source of randomness, send this through the channel to B, who then applies a decoding function to obtain the origi-
nal $s$ bit message; we require a scheme in which the spy obtains no information about the $s$ bit message. For example, to communicate one bit, $y \in \mathbf{B}, \mathrm{~A}$ can pick $x_{1}, \ldots, x_{n-1}$ at random and then set $x_{n}$ to be the XOR of $y$ and $x_{1}, \ldots, x_{n-1}$, which B will decode by computing the XOR of $x_{1}, \ldots, x_{n}$. Constructing such an encoding and decoding for general $s$ turns out to be equivalent to the coloring problem, again with $c=2^{s}$ and $k=n-t$.

Returning to the coloring problem, consider the colorings by $f: \mathbf{B}^{n} \rightarrow \mathbf{B}^{s}$, identifying $\mathbf{B}^{s}$ with the set of colors, for those $f$ 's formed by XOR's of the variables, i.e. $f=\left(f_{1}, \ldots, f_{s}\right)$ with each $f_{i}$ being an XOR of a subset of the variables; we call such a coloring an $X O R$ coloring. Let $\kappa_{\mathrm{XOR}}(c, n)$ denote the smallest value of $k$ that an XOR coloring can achieve given $c, n$. It has been conjectured (e.g. [Vaz85]) that $\kappa_{\mathrm{XOR}}(c, n)=\kappa(c, n)$ for all $c, n$, i.e. that that XOR colorings can always achieve the optimal $k$; as mentioned before, this was proven for all $n$ with $c=4$ in $\left[\mathrm{CFG}^{+} 85\right]$ (and is clear for $c=2$ ).

It is easy to determine $\kappa_{\text {XOR }}(c, n)$ to within $O(c)$. For example, for $n$ divisible by $c-1$, it is easy to see that $\kappa_{\mathrm{XOR}}(c, n)=n \theta_{c}+1$, where $\theta_{c}=(c / 2-1) /(c-1)$. It follows that $\kappa_{\mathrm{XOR}}(c, n)$ is always within $(c-2) / 2$ of $n \theta_{c}+1$.

Here we prove:
Theorem 1.1 For any $(c ; n, k)$ coloring we have ( $k-$ $1) / n \geq \theta_{c}$, i.e. $\kappa(c, n) \geq n \theta_{c}+1$.

Corollary 1.2 For $c-1 \mid n, n>0, X O R$ colorings are optimal. For any n, $c$, XOR colorings are within ( $c-2$ )/2 of optimal.

It is a non-trivial problem to determine $\kappa_{\mathrm{XOR}}(c, n)$ exactly for general $n$, but one can do so in certain cases to obtain other bounds as a corollary. For example, one gets:
Proposition 1.3 For $n \geq 2$ and $\equiv-2,-1,0,1, c / 2-$ $1, c / 2, c / 2+1 \quad(\bmod c-1)$, we have $\kappa_{\mathrm{XOR}}(c, n)=$ $1+\left\lceil n \theta_{c}\right\rceil$ and hence $=\kappa(c, n)$. For $n>2$ and $\equiv 2$ $(\bmod c-1)$ with $c \geq 8, \kappa_{\mathrm{XOR}}(c, n)=2+\left\lceil n \theta_{c}\right\rceil$, and hence $\kappa_{\mathrm{XOR}}(c, n)$ is at worst within 1 of $\kappa(c, n)$. For $c=8$ the former and latter congruences hold according to whether $n \not \equiv 2(\bmod 7)$ or not. For any $n, c$, $\kappa \mathrm{XOR}(c, n)$ is within $c / 4$ of $\kappa(c, n)$.
In particular, $n \equiv 2(\bmod 7)$ is the simplest case in which we don't know if XOR colorings are optimal.

We are also interested in two related problems:
Problem 1.4 For $k<\kappa(c, n)$, how close (in various metrics involving $\mathcal{H}_{k}$ ) to equicolorable can be achieved by a c-coloring of $\mathbf{B}^{n}$ ?

Problem 1.5 Classify all optimal colorings, at least for $c-1 \mid n$. Are there optimal colorings not obtainable as XOR type colorings?

The author knows of no optimal colorings other than XOR colorings. Of course, if one views $n$ and $k$ as fixed and asks for the optimal $c$, then there exist optimal colorings which are not XOR colorings (e.g. $k=(n / 3)-1$ with $3 \mid n$ and $n$ large, so that $c=1$ is the optimal $c$ ).

In this paper we study problem 1.4 for the metric $L^{2}\left(\mathcal{H}_{k}\right)$ (defined in section 3 ). We give a lower bound on the distance to "equicolor" one can achieve for $k<$ $\kappa(c, n)$. One remarkable fact is:

Theorem 1.6 For $c-1 \mid n$, the optimal XOR coloring is closest to equicolorable in $L^{2}\left(\mathcal{H}_{k}\right)$ for any $k$.

Both this theorem and theorem 1.1 are proven using the eigenvalues and eigenspaces of the adjacency matrix of the $\mathbf{B}^{n}$. Such methods can yield other inequalities expressable in terms of the distance distribution (see section 3) of a subset of $\mathbf{B}^{n}$. For example, the fact that the average influence of a variable on a boolean function which is 1 on half of the values is at least $1 / n$ (see [KKL88]) follows immediately from the fact that the sum of the influences is just $\left((n-A) \chi_{c}, \chi_{c}\right)=2^{n} \sum_{r>0} 2 r \mu_{r} \geq 2^{n} \sum_{r>0} 2 \mu_{r}=2^{n}$, using the notation of section 2 , where $C$ is the subset of $\mathbf{B}^{n}$ where the function takes the value 1.

In general, XOR colorings are not closest to equicolor for many important metrics, such as the $\operatorname{RP}\left(\mathcal{H}_{k}\right)$ metric defined in section 3 (already for the case $n=$ $c=4, k=2$ ). Roughly speaking, the problem is that for $k$ one less than what can be achieved by the best XOR coloring for fixed $c, n$, the best XOR colorings are equicolored on almost all $H \mathcal{H}_{k}$, but on the other $H$ 's they avoid half the colors! It would be interesting to know about the closest to equicolor colorings for various sup-type norms, such as $\operatorname{RP}\left(\mathcal{H}_{k}\right)$ or $L^{\infty}\left(\mathcal{H}_{k}\right)$, and to give an explicit constructions.

In the proof that XOR colorings are optimal for $c=4$ of $\left[\mathrm{CFG}^{+} 85\right]$, one produces from an optimal coloring $f_{1}, f_{2}$ two subsets of variables $X_{1}, X_{2}$ whose XOR's yield an optimal coloring (any $X_{1}, X_{2}$ with the Fourier coefficient of $f_{1}, f_{2}, f_{1}+f_{2}$ non-vanishing at, respectively, $X_{1}, X_{2}, X_{1}+X_{2}$ will do). This proof does not directly generalize because of the possibility of cancellation of Fourier coefficients in computing a convolution, and theorem 1.1 somehow precludes very bad cancellation. It would be nice to find a generalization of the method in $\left[\mathrm{CFG}^{+} 85\right]$, understanding precisely how much cancellation can occur in such convolutions. In our paper there is no explicit reference
to Fourier coefficients of the $f_{i}$ 's. They occur only implicitly, in that the eigenspace of the adjacency matrix of $\mathbf{B}^{n}$ corresponding to the eigenvalue $n-2 r$ is precisely the (R-linear) span of the collection of all XOR's of $r$ variables.

In section 2 we give a short proof of theorem 1.1 and prove some facts about the optimal XOR colorings, proving proposition 1.3 . In section 3 study the approximate equicoloring problem for $L^{2}$. To do so we study, for a subset $C \subset \mathbf{B}^{n}$, its distance distribution. It seems that studying "higher-order" distance distributions may shed light on approximate equicolorings in other norms; for this and other intriguing relations between the distance distribution and the bit extraction problem, the reader is referred to the full version of the paper, [Fri91]. In section 4 we make some remarks about problem 1.5, giving a simple geometric characterization of all XOR colorings.

The author wishes to thank Kai Li, Bernard Chazelle, and Avi Wigderson for useful comments and discussions.

## 2 The Bit Extraction Problem

We begin by proving theorem 1.1. We do this via a somewhat stronger statement. We say that a subset $C \subset \mathbf{B}^{n}$ is $1 / c$ dense in $\mathcal{H}_{k}$ if

$$
\frac{|C \cap H|}{|H|}=\frac{1}{c} \quad \forall H \in \mathcal{H}_{k}
$$

Theorem 2.1 If there exists a $1 / c$ dense in $\mathcal{H}_{k}$ subset of $\mathbf{B}^{n}$, then $(k-1) / n \geq \theta_{c}$.

Theorem 1.1 follows by taking $C$ to be the set of vertices of any fixed color of a ( $c ; n, k$ ) coloring.
Proof Consider the adjacency matrix, $A$ of the Boolean cube, and $\chi_{C}$, the characteristic function of $C$ in $\mathbf{B}^{n}$. Clearly $\left(A \chi_{C}, \chi_{C}\right) \geq 0$. On the other hand, the eigenvalues of $A$ are $n-2 r$ with $r=0,1, \ldots n$, and the corresponding eigenspaces, $E_{r}$, are just the spans of all XOR's of $r$ variables, viewing $\mathbf{B}$ as $\{-1,+1\}$. It follows that if $v_{r}$ is the projection of $\chi_{C}$ onto $E_{r}$, then the assumption that $C$ is $1 / c$ dense in $\mathcal{H}_{k}$ implies that $v_{1}=\cdots=v_{n-k}=0$ (and conversely ${ }^{1}$ ). Setting $\mu_{r}=\left|v_{r}\right|^{2} /\left|\chi_{c}\right|^{2}$, we have

$$
\sum_{r=0}^{n} \mu_{r}=\frac{\sum\left|v_{r}\right|^{2}}{\left|\chi_{C}\right|^{2}}=1
$$

[^1]and
$$
\left(A \chi_{C}, \chi_{C}\right)=\sum_{r=0}^{n}(n-2 r)\left|v_{r}\right|^{2}=\left|\chi_{C}\right|^{2} \sum_{r=0}^{n}(n-2 r) \mu_{r}
$$

Also, $E_{0}$ corresponds to the trivial eigenvector, $(1, \ldots, 1)$, and so $\mu_{0}=|C| / n=1 / c$; this and $\mu_{1}=$ $\cdots=\mu_{n-k}=0$ give

$$
0 \leq n \mu_{0}+\sum_{r=n-k+1}^{n}(n-2 r) \mu_{r} \leq
$$

$n \mu_{0}+(2 k-2-n) \sum_{r=n-k+1}^{n} \mu_{r}=n \frac{1}{c}+(2 k-2-n) \frac{c-1}{c}$,
and so

$$
2(k-1) \frac{c-1}{c} \geq n \frac{c-2}{c}
$$

which is the desired result.

We will now evaluate $\kappa_{\text {XOR }}(c, n)$ for some special values of $n$ to deduce corollary 1.2 and proposition 1.3. First recall that in general $f_{1}, \ldots, f_{s}$ yield an $\mathcal{H}_{k}$ equicolored coloring iff all XOR's of a subsets of $\left\{f_{1}, \ldots, f_{s}\right\}$ yields a function which is half 1 , half -1 on every $H \in \mathcal{H}_{k}$ (see, for example, [CFG $\left.{ }^{+} 85\right]$; this is just to say that the standard $2^{s} \times 2^{s}$ Hadamard matrix is invertible). So for a subset $T \subset S=\{1, \ldots, s\}$, consider the XOR of the $f_{i}$ with $i \in T$, which we denote $f_{T}$. If the $f_{i}$ are XOR's of a subsets the variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then so is each $f_{T}$. Furthermore, an XOR of the variables is half 1 , half -1 on $\mathcal{H}_{k}$ iff it is the XOR of at least $n-k+1$ variables. This reduces the analysis of optimal XOR colorings to a question about the possible Venn diagrams of $s$ subsets, $X_{1}, \ldots, X_{s}$, of $X, X_{i}$ being the subset of variables of which $f_{i}$ is an XOR (which is equivalent to a question about error correcting codes, as in $\left[\mathrm{CFG}^{+} 85\right]$ ).

Namely, for a non-empty $T \subset S$, consider the size of the corresponding component of the Venn diagram on the $X_{i}$ 's,

$$
I_{T}=\left|\left(\cap_{i \in T} X_{i}\right) \cap\left(\cap_{i \notin T} \bar{X}_{i}\right)\right|
$$

where $\bar{X}_{i}$ is the complement of $X_{i}$ in $X$. The $X_{i}$ 's correspond to an $\mathcal{H}_{k}$ equicolored coloring iff for all $U \subset S$,

$$
\begin{equation*}
\sum_{|T \cap U| \equiv 1} I_{T} \geq n-(k-1) \tag{2.1}
\end{equation*}
$$

Furthermore if there exist non-negative, integral $I_{T}$ satisfying the above equation with $n \geq k$, then clearly there exists a $(c ; n, k)$ XOR coloring.

Summing the above over all $U$ shows that

$$
\begin{equation*}
\kappa_{\mathrm{XOR}}(c, n) \geq 1+n \theta_{c} \tag{2.2}
\end{equation*}
$$

and if equality holds then each of the inequalities of equation 2.1 holds with equality; the invertibiliy of the standard Hadamard matrix implies that equality holding in all the above inequalities necessitates $I_{T}=$ $n /(c-1)$. So for $c-1 \mid n$, any choice of $X_{i}$ with $I_{T}=$ $n /(c-1)$ for all $T$ yields an optimal coloring, and any optimal coloring occurs in this way. For $c-1 \mid n$ we use the term balanced XOR coloring for any optimal XOR coloring, to emphasise the fact that all $I_{T}$ 's are equal. Furthermore we have

Proposition 2.2 For $n \geq 2$ and $\equiv-2,-1,0,1, c / 2-$ $1, c / 2, c / 2+1 \quad(\bmod c-1), \kappa_{\mathrm{XOR}}(c, n)=1+\left\lceil n \theta_{c}\right\rceil$, and thus optimal colorings can be achieved by XOR colorings in these cases.

Proof All cases follow easily from the case $n=c / 2$ and the trivial case $n=c-1$. For $n=c / 2$ we take the "odd coloring," namely $I_{T}$ is $=1,0$ according to whether or not $|T|$ is odd. It is easy to see than any $U$ has $|T \cap U|$ odd for at least half the $T$ with $|T|$ odd, and so $\kappa_{\mathrm{XOR}}(c, c / 2) \leq c / 4+1$. Rest of details omitted.

For general $n$ the problem of determining $\kappa_{\mathrm{XOR}}(c, n)$ is more difficult. However, for fixed $c$ it suffices to check the cases $n=1,2, \cdots, O\left(c^{2}\right)$ to determine $\kappa_{\mathrm{XOR}}(c, n)$ for all $n$. Indeed, for a fixed $r \in[0, c-2]$ let $K=K(r)$ be the smallest integer such that for all $m$ sufficiently large there exists a $(c ;(c-1) m+r,(c / 2-1) m+K+1)$ XOR coloring.

Lemma 2.3 An XOR coloring with $I_{T}=0$ for some $T$ has $(k-1) / n \geq 1 / 2$. For any $r$ there exists a unique $m_{0}=m_{0}(r) \leq 2 K(r)-r$ such that there exist $(c ;(c-$ 1) $m+r,(c / 2-1) m+K+1)$ for all $m \geq m_{0}$.

Proof The first statement follows from summing over all $U$ with $|T \cap U| \equiv 1 \quad(\bmod 2)$. For the second part, $m_{0}$ obviously exists, and the coloring at $n=$ $(c-1) m_{0}+r$ must have at least one $I_{T}$ equal zero, or else we could subtract 1 from all the $I_{T}$ 's to get a coloring as above with $m=m_{0}-1$. So the first statement applies to yield $m_{0} \leq 2 K(r)-r$.

In particular, checking $\kappa_{\mathrm{XOR}}(c, n)$ for $n=$ $1,2, \ldots, O\left(c^{2}\right)$, we can determine all $K(r)$ 's, and therefore all $\kappa \mathrm{XOR}(c, n)$ with $n \geq m_{0}(r)(c-1)+r=O\left(c^{2}\right)$ by the above. Another consequence of the above is:

Proposition 2.4 $K(2)=2$ for $c \geq 8$, and for $n>2$ and $\equiv 2 \quad(\bmod c-1)$ we have $\kappa_{\mathrm{XOR}}(c, n)=2+\left\lceil n \theta_{c}\right\rceil$.

Proof $K(1)=1$ implies that either $K(2)$ is 1 or 2. The lemma implies that to rule out $K(2)$ being 1 it suffices to check the case $m_{0}=0$, i.e. $n=2$, where there is nothing to check (since $2^{n}<c$ ). Hence $K(2)=2$, and then clearly $m_{0}(2)=1$, i.e. for $n=c+1$ we can achieve $\kappa_{\mathrm{XOR}}(c, n)=2+\left\lceil n \theta_{c}\right\rceil$.

Proposition 1.3 is a consequence of the above.

## 3 Almost Equicolored Colorings and Profiles

For a $c$-coloring, $\gamma: \mathbf{B}^{n} \rightarrow \mathbf{B}^{s}$, we define its $L^{p}\left(\mathcal{H}_{k}\right)$ distance from equicolor via

$$
\|\gamma\|_{L^{p}\left(\mathcal{H}_{k}\right)}^{p}=\sum_{v \in \mathbf{B}_{s}}\left\|\gamma^{-1}(v)\right\|_{L^{p}\left(\mathcal{H}_{k}\right)}^{p}
$$

where for a $C \subset \mathbf{B}^{n}$ (and a fixed $c=|C| / n$ in mind) we define the summand via

$$
\|C\|_{L^{p}\left(\mathcal{H}_{k}\right)}^{p}=\sum_{H \in \mathcal{H}_{k}}| | C \cap H|-|H| / c|^{p}
$$

This is one sense in which we can measure how close to being equicolored a coloring is. In this section we study the case $p=2$. There are other important metrics suggested by the applications, and we mention

$$
\|\gamma\|_{\operatorname{RP}\left(\mathcal{H}_{k}\right)}=\max _{H \in \mathcal{H}_{k}, G \subset \mathbf{B}^{s},|G|=2^{s-1}}\left|\gamma^{-1}(G)-2^{k-1}\right|
$$

this measures how well the bits $\gamma$ extracts work as a random source to an RP algorithm, $G$ being interpreted as the set of witnesses.

We study $\|C\|_{L^{2}\left(\mathcal{H}_{k}\right)}$ for a $C \subset \mathbf{B}^{n}$ via $C$ 's distance distribution in the following sense:

Definition 3.1 The distance distribution of a $C \subset$ $\mathbf{B}^{n}$ is the collection of numbers, $N_{i}$, defined to be the number of pairs $\left(c_{1}, c_{2}\right) \in C \times C$ of points in $C$ of distance $i$ (i.e. in the $\mathbf{B}^{n}$ or Hamming distance), for $i=0, \ldots, n$.

The $N_{i}$ is essentially the weight enumerator of coding theory (see [CS88] or [vL82]).

Consider, for a $C \subset \mathbf{B}^{n}$ with $|C|=n / c$,

$$
\mathcal{E}_{j}(C) \equiv \sum_{H \in \mathcal{H}_{j}}|C \cap H|^{2}
$$

Since
$\|C\|_{L^{2}\left(\mathcal{H}_{j}\right)}^{2}=\sum_{H \in \mathcal{H}_{j}}(|C \cap H|-|H| / c)^{2}=\mathcal{E}_{j}(C)-\frac{2^{n+j}}{c^{2}}\binom{n}{j}$,
$\mathcal{E}_{j}(C)$ can be used to measure how close $C$ is to being equicolored with respect to $\mathcal{H}_{j}$. Routine calculations demonstrate that one can calculate $\mathcal{E}_{j}$ knowing the $\mu_{i}$ 's of section 2 (see [Fri91] for details):

## Lemma 3.2

$$
N_{i}=\left(q_{i}(A) \chi_{C}, \chi_{C}\right)=\sum_{r=0}^{n} q_{i}(n-2 r)|C| \mu_{r}
$$

where $q_{i}$ is a polynomial of degree $i$ given by $q_{0}=1$, $q_{1}(x)=x$, and

$$
\begin{equation*}
q_{i+1}(x)=\left(\frac{x}{i+1}\right) q_{i}(x)-\left(\frac{n-i+1}{i+1}\right) q_{i-1}(x) \tag{3.1}
\end{equation*}
$$

for $i \geq 1$. Furthermore,

$$
\begin{gathered}
\mathcal{E}_{j}=\sum_{l=0}^{j}\binom{n-l}{j-l} N_{l}=\left(s_{j}(A) \chi_{C}, \chi_{C}\right)= \\
\sum_{r=0}^{n} s_{i}(n-2 r)|C| \mu_{r},
\end{gathered}
$$

where $s_{j}$ is a polynomial of degree $j$ with leading coefficient $(n(n-1) \cdots(n-j+1))^{-1}$, given generally as

$$
\begin{equation*}
s_{j}(x)=\sum_{l=0}^{j}\binom{n-l}{j-l} q_{i}(A) . \tag{3.2}
\end{equation*}
$$

The key point in the proof of theorem 1.6 is to understand the polynomials $s_{j}$; they are determined by the following proposition. The author admits to having discovered this proposition by example with computer-aided calculations, which once known is easy to prove (yet the author knows no direct combinatorial proof using only equations 3.2 and 3.1).

Proposition $3.3 s_{j}$ has $-n,-n+2, \ldots,-n+2 j-2$ as its $j$ roots; i.e.

$$
\begin{gathered}
s_{j}(x)=\frac{(x+n)(x+n-2) \cdots(x+n-2 j+2)}{n(n-1) \cdots(n-j+1)}= \\
2^{j}\binom{(x+n) / 2}{j} .
\end{gathered}
$$

Proof It is clear from the definition of the $s_{j}$ 's that they are polynomials of degree $j$ satisfying

$$
\left(s_{j}(A) f, f\right)=\sum_{H \in \mathcal{H}_{j}}\left(\sum_{x \in H} f(x)\right)^{2}
$$

for any $f \in L^{2}\left(\mathbf{B}^{n}\right)$. The right-hand-side of the above clearly vanishes if $f$ is the XOR of $r$ variables with $r \geq n-j+1$. Since such an $f$ has eigenvalue $n-2 r$, we conclude that $s_{j}$ has a root $n-2 r$ for any $r \geq n-j+1$.

From this proposition we see that $s_{j}(x)$ restricted to $x=-n,-n+2, \ldots, n$ is a convex function, as is its restriction to $[-n+2 j-2,+\infty)$, and we easily obtain the following stronger version of theorem 1.6:

Theorem 3.4 For $c-1 \mid n$ and $j \leq 1+\theta_{c} n$, the balanced XOR coloring is closest in $L^{2}\left(\mathcal{H}_{j}\right)$ to equicolor, and any coloring as close must have the same distance distribution as that of the balanced XOR coloring. In other words,

$$
\frac{\left(s_{j}(A) \chi_{C}, \chi_{C}\right)}{\left(\chi_{C}, \chi_{C}\right)} \geq \frac{1}{c} s_{j}(n)+\frac{c-1}{c} s_{j}(-n /(c-1))
$$

equality holding iff $c-1 \mid n$ and all $\mu_{i}$ 's vanish except for $\mu_{0}=1 / c$ and $\mu_{n\left(1-\theta_{c}\right)}=(c-1) / c$. For $c-1 \nmid n$, setting $-n /(c-1)=t+\alpha$ with $t$ an integer and $\alpha \in(0,1)$, we have the sharper bound

$$
\frac{\left(s_{j}(A) \chi_{C}, \chi_{C}\right)}{\left(\chi_{C}, \chi_{C}\right)} \geq \frac{1}{c} s_{j}(n)+\frac{c-1}{c}\left((1-\alpha) s_{j}(t)+\alpha s_{j}(t+1)\right)
$$

with equality iff $\mu_{t}=(1-\alpha)(c-1) / c, \mu_{t+1}=\alpha(c-$ 1) $/ c$.

## 4 Locally Symmetric Colorings and Concluding Remarks

We consider the problem of classifying for $c-1 \mid n$ all optimal colorings, i.e. with $k=1+n \theta_{c}$. We call a coloring, $\gamma: \mathbf{B}^{n} \rightarrow \mathbf{B}^{s}$ locally symmetric if there is an $\eta$ such that for all $v \in \mathbf{B}_{n}$, exactly $n \eta$ of $v$ 's neighbors are colored $\gamma(v)$, and every other color occurs among $v$ 's neighbors exactly $n(1-\eta) /(c-1)$ times. In addition we say that the coloring is sparse if $\eta=0$; the balanced coloring is an example.

It is easy to see that locally symmetric colorings are also symmetric in their "distance $i$ neighborhoods" for
all $i$, and that each color has the same distance distribution which is uniquely determined by $\eta$. In particular, a locally symmetric coloring which is optimal for $c-1 \mid n$ must be sparse.

These considerations, and theorems such as theorem 3.4 suggest dividing problem 1.5 into two parts:

Problem 4.1 Are all optimal colorings, i.e. with $k=$ $\kappa(c, n)$, necessarily locally symmetric, at least if $c-$ $1 \mid n$ ?

Problem 4.2 Are all locally symmetric sparse colorings necessarily XOR colorings?

Regarding the latter question, and XOR colorings in general, one can make the following observation. Consider a general cycle of length 4 in $\mathbf{B}_{n}$, $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right)$. XOR colorings satisfy the following two conditions:

1. $\gamma\left(v_{3}\right)$ depends only on $\gamma\left(v_{0}\right), \gamma\left(v_{1}\right), \gamma\left(v_{2}\right)$, not on the particular cycle,
2. $\gamma\left(v_{0}\right)=\gamma\left(v_{2}\right)$ implies $\gamma\left(v_{1}\right)=\gamma\left(v_{3}\right)$.

Proposition 4.3 Any locally symmetric coloring satisfying the above two conditions is an XOR coloring.

Proof Fix any coloring, $\gamma$, of $\mathbf{B}^{n}$, and a vertex, $v \in \mathbf{B}_{n}$. We define a group law on the colors as follows. We can assume $\eta<1$, or else there is nothing to prove. So for any $\gamma_{1} \neq \gamma_{2}$ neither equal $\gamma(v)$, there exist neighbors $v_{1}, v_{2}$ of $v$ with $\gamma\left(v_{i}\right)=\gamma_{i}$. There exists a unique $v_{3}$ making $v, v_{1}, v_{3}, v_{2}$ a simple cycle of length 4 ; define $\gamma_{1}+\gamma_{2}$ to be $\gamma\left(v_{3}\right)$. If $\gamma_{1}=\gamma_{2}$ define their sum to be $\gamma(v)$, and if one of $\gamma_{1}, \gamma_{2}$ is $\gamma(v)$ define their sum to be the other $\gamma_{i}$. That this defines defines a commuatative, associative group law, with identity $\gamma(v)$, and every other element of order 2 , is an easy consequence of the above conditions; for example, commutativity follows from the fact that if $v_{0}, v_{1}, v_{2}, v_{3}$ is a simple cycle then so is $v_{0}, v_{3}, v_{2}, v_{1}$; associativity follows from the fact that the sum of three colors is the antipodal point to $v_{0}$ in a subcube of $\mathbf{B}^{n}$ isomorphic to $\mathbf{B}^{3}$. This sets up an isomorphism between the colors and $\mathbf{B}^{s}$. One can similarly show that for every cycle $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{0}\right)$ we have the sum of the colors vanishing (i.e. $=\gamma(v)$ ). Setting coordinates on $\mathbf{B}^{n}$ so that $v$ is the origin, the coloring of the neighbors of $v$ determine XOR's, $f_{1}, \ldots, f_{s}$ such that the $f_{i}$ 's induce the given coloring on $v$ and its neighbors. The conditions on the coloring imply, by induction on $k$, that for any $w \in \mathbf{B}^{n}$ of distance $k$ to $v$, the coloring determined by the $f_{1}, \ldots, f_{s}$ agrees with the original coloring.

Of course, in the above proposition, one can replace the local symmetry condition by the condition that, say, each $v \in \mathbf{B}^{n}$ has all colors appearing among its neighbors except for, possibly, its own color. Call such a coloring connected. We can restate the problems as:

Problem 4.4 Is any optimal coloring necessarily connected and does it necessarily satisfy the above two conditions?

## References

[BBR88] C.H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public discussion. SIAM J. on Computing, 17(2):210-229, 1988.
[Bra89] G. Brassard. Cryptology- Column 1. SIGACT News, 20(3):15-19, Summer 1989.
$\left[\mathrm{CFG}^{+} 85\right]$ B. Chor, J. Friedman, O. Goldreich, J. Håstad, S. Rudich, and R. Smolensky. The bit extraction problem or $t$-Resilient functions. In 26th Annual Symposium on Foundations of Computer Science, pages 396-407, 1985.
[CS88] J.H. Conway and N.J.A. Sloan. Sphere Packings, Lattices, and Groups. SpringerVerlag, 1988.
[Fri91] J. Friedman. On the bit extraction problem. Technical report, Princeton University, December 1991.
[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In 29th Annual Symposium on Foundations of Computer Science, pages 68-80, 1988.
[Vaz85] U. Vazirani. Towards a strong communication complexity theory, or generating quasi-random sequences from two communcating slightly-random sources. In Proc. of $1^{77}$ th ACM Symposium on Theory of Computing, pages 366-378, 1985.
[vL82] J.H. van Lint. Intorduction to Coding Theory. Springer-Verlag, 1982.


[^0]:    *The author also wishes to acknowledge the National Science Foundation for supporting this research in part under a PYI grant, CCR-8858788.

[^1]:    1 "Conversely" follows from the invertibility of the standard $2^{n} \times 2^{n}$ Hadamard matrix. In modern lingo, all the weight 1 thru $n-k$ Fourier coefficients vanish for the function taking the value 1 on $C$ and 0 elsewhere, as in $\left[\mathrm{CFG}^{+} 85\right]$, section 5.1.

