
A Deterministic View of Random
Sampling and its Use in Geometry

Bernard Chazelle and Joel Friedman

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract: The combination of divide-and-conquer and random sampling has proven very effective
in the design of fast geometric algorithms. A flurry of efficient probabilistic algorithms have been
recently discovered, based on this happy marriage. We show that all those algorithms can be
derandomized with only polynomial overhead. In the process we establish results of independent
interest concerning the covering of hypergraphs and we improve on various probabilistic bounds in
geometric complexity. For example, given n hyperplanes in d-space and any integer r large enough,
we show how to compute, in polynomial time, a simplicial packing of sizeO

(
rd
)

which covers d-space,
each of whose simplices intersects O(n/r) hyperplanes. Also, we show how to locate a point among
n hyperplanes in d-space in O(log n) query time, using O

(
nd
)

storage and polynomial preprocessing.

A preliminary version of this work has appeared in the proceedings of the 29th Annual IEEE Sym-

posium on Foundations of Computer Science (1988), 539–549.

Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this
research in part under Grant CCR–8700917. Joel Friedman wishes to acknowledge the National
Science Foundation for supporting this research in part under Grant CCR–8858788, and the Office
of Naval Research under Grant N00014–87–K–0467.

1

Deterministic Random Sampling 2

1. Introduction

Recent efforts have demonstrated the considerable power of randomization in speeding up geometric
algorithms, especially at the low end of the complexity spectrum. Efficient Las Vegas algorithms
have been discovered for range searching, triangulation, nearest neighbors, convex hulls, hidden-
surface removal, motion-planning, etc. [,,,,,,,,,,]. But for all their appeal, probabilistic algorithms
raise a disturbing question: how much distortion in the deterministic complexity of a problem do we
let in by allowing randomization? Put more bluntly, what can we hope to learn from probabilistic
models? The issue has been under intense scrutiny lately, especially in the context of the NC vs.
RNC question. A popular technique for removing randomization is to check if mutual independence
is necessary, and if not, reduce the probability space to allow exhaustive searching (see Joffe’s
construction in [] and the discussion of it in []). Another approach is the method of conditional
probabilities (Raghavan [], Spencer [], Pach and Spencer []). The basic idea is to estimate the
probabilities of failure associated with the nodes of the computation tree. The difficulty is that
estimating these probabilities may not always be doable in polynomial time. Finally, if all else has
failed, there always remains the option of looking for a deterministic solution without a probabilistic
model in mind...

The main contribution of this work is to show that most of the Las Vegas algorithms used
in computational geometry can be made deterministic. In doing so, we also improve on some of
the probabilistic complexity bounds obtained earlier. Our starting point is the observation that
randomization is often confined to repeated random sampling over a fixed domain. Invariably, the
desired feature of a random sample is to behave somewhat like a point cover (Lovász []) or likewise
a puncture set (Spencer []). We say “somewhat” because we must add a twist to the definition of
these notions. Briefly, the setting is this: let H be a hypergraph of n vertices and m = nO(1) edges.
Given an integer r, pick an r-sample (i.e., a subset of r vertices) such that every edge of size past a
certain threshold contains at least one sample vertex. This model is nice to work with, but it is a tad
too general to give good results. Looking at the computational geometry literature where random
sampling has been used, two distinct types of scenarios appear. In one case the covering requirement
is confined to a particular subset of the edges specified by the sample itself (e.g., Clarkson [,,,], Reif
and Sen []). Furthermore, the hypergraph is assumed to obey a certain bounded vertex dependency
condition. In the other scenario (Haussler and Welzl []) we restrict ourselves to hypergraphs induced
by range spaces of finite Vapnik-Chervonenkis dimension []. In this framework, a certain parameter
of the hypergraph akin to its clique number is bounded above by a constant. Numerous other
applications fitting either of these scenarios have been found recently (e.g., [,,,,,]).

Our main result is a framework which unifies both random sampling scenarios and yield de-
terministic solutions for the underlying covering problems. In the process we establish results of
independent interest concerning the covering of hypergraphs. For this we modify Lovász’s greedy
cover algorithm []. The result is this: Given a hypergraph with n vertices and m edges, each of
size ≥ αn, the algorithm computes an r-sample that intersects every edge e of the hypergraph in
Ω(|e|r/n) vertices, where r = O

(
(logn + logm)/α

)
. This means that for each edge the number of

covered vertices is at least a fixed fraction of the “expected” value in the probabilistic model. By
comparison, Lovász’s algorithm guarantees only one covered vertex per edge.

Deterministic Random Sampling 3

The tools for computing covers which we present in this paper are powerful enough to deran-
domize just about every probabilistic algorithm proposed in computational geometry. It must be
noted, however, that our deterministic constructions can be worthless if the underlying problem is
of very low complexity. For example, the fastest known deterministic algorithm for triangulating
a simple n-gon runs in time O(n log log n) (Tarjan and Van Wyk [])†: its probabilistic counterpart
is slightly better, running in time O(n log∗ n) (Clarkson et al. []). Our methods incur substantial,
albeit polynomial, overhead and are too heavy-handed for such a delicate line of business. Still,
there is plenty of room left for interesting applications, in particular, in the area of geometric data
structures. Here are a few examples (in the following, ε denotes any positive real).

(1) Post-Office. Given n points in Ed, there exists a data structure of sizeO
(
ndd/2e+ε

)
for answering

nearest-neighbor queries in O(log n) time (Clarkson []).

(2) Halfplane Range Search. Given n points in Ed, there exists a data structure of size O
(
nd+ε

)
for counting how many points lie on one side of a query hyperplane in time O(log n) (Clarkson
[]). There is also a data structure of size O

(
nbd/2c+ε

)
for reporting all k points on one side of a

query hyperplane in time O(k + logn) (Clarkson []).

(3) Simplex Range Search. Given n points in Ed, there exists a data structure of size O(n) for

counting how many points lie inside a query simplex in time O
(
n

d(d−1)
d(d−1)+1 +ε

)
(Haussler and

Welzl []).

(4) Probabilistic Divide-and-Conquer. Given n hyperplanes in d-space and a parameter r > 0,
there exists a simplicial cell decomposition of Ed of size O

(
rd
)

such that each simplex intersects
O
(
n(log r)/r

)
hyperplanes (Clarkson [], Edelsbrunner et al. []). The decomposition can be

computed probabilistically in polynomial time.

Using our techniques, all the probabilistic algorithms listed above can be made deterministic. The
conversions entail little else than re-implementing the random calls made by the algorithms. Also,
we are able to improve upon some of the complexity bounds stated above. For example, given n

hyperplanes in d-space and any integer r large enough, we show how to compute, in polynomial time,
a simplicial packing of size O

(
rd
)

which covers d-space, each of whose simplices intersects O(n/r)
hyperplanes. Also, we show how to locate a point among n hyperplanes in d-space in O(log n) query
time, using O

(
nd
)

storage and polynomial preprocessing.

2. Frames and Covers

A hypergraph H is a pair (V,E), where V is a finite set (the vertices) and E is a set of nonempty
subsets of V (the edges). We say that H is a multi-hypergraph if we allow empty and multiple edges.
In that case, E is to be understood as a multiset. A subset of V of size r is called an r-sample. We
define a frame F as a pair (H ;ϕ), where H is a hypergraph and ϕ is a map from 2V to 2E such that
(i) ϕ(V) = E and (ii) W ′ ⊆W ⊆ V implies ϕ(W ′) ⊆ ϕ(W). The frame is said to be of dimension d

† Throughout this paper, unless specified otherwise, logarithms are taken to the base 2.

Deterministic Random Sampling 4

if d is a positive real constant and, for each W ⊆ V , the size of {W ∩e | e ∈ ϕ(W) } is at most c|W |d,
for some constant c. Note that the dimension is not defined uniquely and that bounded dimension
does not imply that |ϕ(W)| is polynomial in |W |. The ratio min{ |e|/|V | : e ∈ E } is called the
threshold of the frame. Finally, we say that an r-sample R is an r-cover (or cover, for short) for
the frame if it has a nonempty intersection with every edge of ϕ(R). Here is our main result about
frames.

Theorem 2.1. Let F be a frame of dimension d with n vertices and let r ≤ n be any integer larger
than some constant. If the threshold of F is at least c(log r)/r, for some appropriate constant c,
then it is possible to find an r-cover for the frame in O

(
rnd+1

)
time.

Before giving the proof (section 3), let us relate this result to the way random sampling has been
used in the computational geometry literature. There are two basic “schools” to which the majority
of randomized geometric algorithms can be attached one way or the other. One can be traced to
(Clarkson [,,,], Reif and Sen []) and is modeled by hypergraphs of bounded vertex dependency (in
our terminology). The other class of randomization (Haussler and Welzl []) concerns hypergraphs
of finite Vapnik-Chervonenkis dimension. We give formal definitions of these notions below and
describe the type of random sampling attached to them. Then we show that these are special cases
of a frame. In section 4 we give a construction that in some sense removes the log r factor for a
certain type of hypergraph of bounded vertex dependency, which we call robust.

We say that a multi-hypergraph H = (V,E) has bounded vertex dependency if each edge e is
associated with a nonempty subset σ(e) of V , called its signature, such that for each edge e and any
W ⊆ V , we have |σ(e)| ≤ d and |σ−1(W)| ≤ c (counted as a multiset), for some constants c and d;
d is called its vertex dependency. Given an r-sample R we define the domain of the sample, denoted
H(R), as the multiset of edges whose signatures are subsets of R. An edge e is called t-deficient
if (i) e ∈ H(R), (ii) R ∩ e = ∅, and (iii) |e| ≥ tn/r. Informally, an edge is t-deficient if (i) it is
relevant, (ii) the sample fails to hit it and (iii) that miss represents a deviation from the expected
number of hits by a factor of at least t. (Note that an empty edge in H(R) is always 0-deficient,
no matter what.) It is not difficult to prove that a random r-sample (from the uniform distribution
over r-subsets) will leave no edge (c log r)-deficient, for some constant c. We turn to frames for an
effective construction.

Theorem 2.2. Given an n-vertex multi-hypergraph H of vertex dependency d and any integer
r ≤ n larger than some constant, it is possible to compute an r-sample that leaves no edge of H
(c log r)-deficient, for some constant c. The running time is O

(
rnd+1

)
.

Proof: We can assume that H = (V,E) has no edges of size less than cn(log r)/r, for we can always
remove them. We define ϕ(W) as the set (not multiset) { e ∈ E |σ(e) ⊆W }. We easily check that
ϕ satisfies the required conditions and that |{W ∩ e | e ∈ ϕ(W) }| = O

(
|W |d

)
. The hypergraph

H∗ =
(
V, ϕ(V)

)
creates a frame (H∗;ϕ) of dimension d, to which we apply Theorem 2.1.

Deterministic Random Sampling 5

Let H = (V,E) be a hypergraph of n vertices. We define the VC-dimension of H as the
maximum size of any W ⊆ V such that {W ∩ e | e ∈ E } = 2W . Given an r-sample R ⊆ V we now
say that an edge e is t-deficient if (i) R ∩ e = ∅ and (ii) |e| ≥ tn/r. We know that for any r ≤ n

large enough there exists an r-sample which leaves no edge (c log r)-deficient, for some constant c
(Haussler and Welzl []). This is related to the central notion of ε-nets. Again, Theorem 2.1 gives an
effective construction.

Theorem 2.3. Given an n-vertex hypergraph of VC-dimension d and any integer r ≤ n larger
than some constant, it is possible to compute an r-sample that leaves no edge of the hypergraph
(c log r)-deficient, for some constant c. The running time is O

(
rnd+1

)
.

Proof: Again, we assume that H has no edges of size less than cn(log r)/r. We define ϕ as the trivial
map which carries every subset of V to E. We know from (Sauer [], Vapnik and Chervonenkis []) that
the hypergraph H has O

(
nd
)

edges. The hypergraph
(
W, {W ∩ e | e ∈ E }

)
obtained by restricting

H to W ⊆ V has VC-dimension at most d, so we also have |{W ∩ e | e ∈ ϕ(W) }| = O
(
|W |d

)
. The

pair (H,ϕ) forms a frame of dimension d, so we can call on Theorem 2.1 to conclude.

3. Covering a Frame

This entire section is devoted to proving Theorem 2.1. Let F :
(
H = (V,E);ϕ

)
be a frame of

dimension d with n vertices and let r ≤ n be a positive integer. We shall assume that r is larger
than some appropriate constant and that the threshold of the frame is at least 7d(log r)/r. As we
recall, this means that each edge of E contains at least 7dn(log r)/r vertices. We will successively
prove the existence of an r-cover of size r and then we will show how to compute it in O

(
rnd+1

)
time.

To begin with, let us see how far we get with the obvious approach, which is to pick a random
r-sample R. The probability that R fails to intersect a given edge of H is at most(

n− d7dn(log r)/re
r

)/(n
r

)
≤
(

1− 7d log r
r

)r
≤ exp(−7d log r) ≤ 1/r7d.

Since E = ϕ(V), there are O
(
nd
)

edges, so the probability that R is not a cover for F is O
(
nd/r7d

)
.

This probability can be made less than 1/2 for, say, any r ≥
√
n.†

Assume now that r <
√
n. To prove the existence of an r-cover, we follow the approach of

(Vapnik and Chervonenkis [], Haussler and Welzl []) and compare the behavior of r-samples and
(2r)-samples. Given a (2r)-sample S we say that an edge e is a witness for S if 2d log r ≤ |S∩e| ≤ r.
Let π(r) be the probability that a random r-sample R fails to be a cover for F . Failure means that
R∩ e = ∅ for some edge e ∈ ϕ(R). Pick one such edge, call it eR, and choose a random r-sample R′

in V \ R. With very high probability R′ will “do things right”, that is, make the edge e a witness

† All the results of this paper are trivial if the vertex set has a constant number of vertices.
Therefore we shall implicitly assume that n always exceeds any appropriate constant.

Deterministic Random Sampling 6

for R∪R′. Let p(r) be the probability that at least one edge e ∈ ϕ(R) both fails to intersect R and
is a witness for R ∪R′ (where both R and R′ are picked randomly, with the condition R ∩R′ = ∅).
We have

p(r) ≥ π(r) × Prob
[
|R′ ∩ eR| ≥ 2d log r : ∃e ∈ ϕ(R); R ∩ e = ∅

]
,

and therefore

p(r) ≥
(

1−
∑

0≤k≤b2d log rc
h(u, k)

)
π(r), (3.1)

where h(u, k) =
(
u
k

)(
m−u
r−k

)/(
m
r

)
, m = n−r, and u =

⌈
7dn(log r)/r

⌉
. Using the trivial approximations

(a− b)b
b!

≤
(
a

b

)
≤ ab

b!
,

we find

h(u, k) ≤ uk(m− u)r−k

(m− r)r

(
r

k

)
.

¿From Robbins’ approximation of the factorial [],

tte−t
√

2πte1/(12t+1) < t! < tte−t
√

2πte1/(12t),

we derive (
r

k

)
≤ (r − k)k

kk(1− k/r)r ≤
(r
k

)k (
1 +

2k
r

)r
,

for 1 ≤ k ≤ r/2, and using the fact that r < m/2,

h(u, k) ≤
(ru
mk

)k (
1− u

m

)r−k (
1 +

2k
r

)r (
1 +

2r
m

)r
.

The function f(x) = (M/x)x achieves its maximum at x = M/e, therefore

h(u, k) ≤ exp
(
− u
m

(
r − k − r

e

)
+ 4d log r +

2r2

m

)
≤ r−d/3

for r large enough and k ≤ 2d log r. From (3.1) it follows that

p(r) ≥
(

1− (2d log r + 1)r−d/3
)
π(r) ≥ π(r)/2. (3.2)

Let S be a (2r)-sample of V and let p(S, r) be the probability that, given a random r-sample R in
S, there exists at least one edge e ∈ ϕ(S) that is a witness for S and fails to intersect R. Let us
now interpret p(r) slightly differently. It is the probability that, given a random (2r)-sample S and
a random r-sample R ⊆ S, there is at least one edge e ∈ ϕ(R) that is a witness for S and fails to
intersect R. Because of the main property of ϕ, we have

p(r) ≤ max
{
p(S, r) |S ⊆ V, |S| = 2r

}
. (3.3)

Deterministic Random Sampling 7

Now, consider a (2r)-sample S for which edge e is a witness. A random r-sample in S will miss e
entirely with probability at most(

2r − 2d log r
r

)/(2r
r

)
≤
(
1− d(log r)/r

)r = o
(
1/r9d/8

)
.

But for the frame F to be of dimension d implies that∣∣{S ∩ e | e ∈ ϕ(S) }
∣∣ = O

(
rd
)
,

therefore p(S, r) = o(1). The existence of an r-cover for F follows from (3.2) and (3.3). We
summarize our results below.

Lemma 3.1 Let F be a frame of dimension d with n vertices and let r ≤ n be any integer larger
than some constant. If the threshold of F is at least 7d(log r)/r, then a random r-sample provides
a cover for F with probability at least a half.

Unfortunately, the existence proof falls short of even remotely suggesting a constructive method.
If we were always allowed large samples, however, Lovász’s greedy cover algorithm [] would work just
fine. The method is simple and it is reviewed below. Our strategy will be to modify the greedy
algorithm in order to strenghten the covering quality of the computed sample. We will then iterate
the modified algorithm a few times to find a small sequence of samples R1 ⊇ · · · ⊇ Rk out of which
an r-cover can be easily derived.

Until specified otherwise let us now consider H = (V,E) to be an arbitrary hypergraph with
n vertices and O

(
nd
)

edges, without any reference to a frame. Let α be a real (not necessarily a
constant) such that 0 < α < 1, and assume that each edge of H has at least αn vertices. Lovász’s
greedy cover algorithm starts with the empty sample R. Then, it iterates on the following process,
each time adding one vertex to the current sample R, until every edge of H intersects R.

1. Pick the vertex v of maximum degree and add it to the sample R.

2. Delete the vertex v from the current hypergraph as well as all the edges that contain it.

How big is the sample R? Let k be the number of edges in H and let k′ be the number of edges in
the resulting hypergraph after the first iteration. The number of removed edges, k−k′ is at least αk,
therefore k′ ≤ (1− α)k. After |R| iterations the hypergraph will be left with no more than roughly
(1 − α)|R|nd edges. This ensures termination within |R| = O

(
(logn)/α

)
steps. To implement the

algorithm efficiently, we can compute all the vertex-degrees in preprocessing and then find the largest
one. After removing the vertex in question, we delete its incident edges: for each of them we update
the vector of vertex-degrees. The time required to do this can be charged to the removed edges, so
the total running time is O

(
nd+1

)
.

If H were the hypergraph of a frame of dimension d then we could use the greedy algorithm
to compute an r-cover, provided that the threshold of the frame exceeded c(logn)/r, for some
appropriate constant c. Since our goal is to provide r-covers for frames with thresholds proportional
to (log r)/r and above, we must improve on the greedy algorithm (unless, of course, r is ≥ nε, for

Deterministic Random Sampling 8

some fixed ε > 0). Once again, let us forget about frames temporarily and return to a general
hypergraph H . Note that random samples of size c(logn)/α, for c large enough, work just as well as
the greedy cover. The difference, however, is that the random sample works more uniformly. Indeed,
it is easy to prove that for a proper setting of c a random r-sample intersects every edge of H in not
just one but roughly |e|r/n vertices.

To add this nice feature to the greedy cover algorithm we must modify the hypergraph a little
and weight its edges with positive integers. First of all, replace each edge e of size greater than
2αn by edges of size between αn and 2αn+ 1, which together partition e. With respect to the new
hypergraph H+ = (V,E+), we define the weighted degree of a vertex v as the sum of the weights
assigned to the edges that contain v. The trick is now to refrain from throwing out edges which
have already been hit, but instead, lower their weights. From the edges’ point of view, this has the
effect of sending this message to the algorithm:

It’s all right to treat me as a kth-class citizen if I’ve been hit k times already (and

k is less than a fraction of my size), but don’t go thinking that I am dead (as the

greedy cover algorithm would). For if you do, my disappearance will automatically

impose a lower bound on the total amount of weight the hypergraph can ever hope

to lose, which in turn will produce a contradiction.

In some sense this approach is dual to the weighting strategy used in (Welzl []) for computing
spanning trees of low stabbing number.

The Modified Greedy Cover Algorithm: Initialize each edge weight to 1 and R to the empty
set. Iterate through steps 1 and 2 exactly r = min

{
n, b4(d+ 1)(log n)/αc

}
times.

1. Pick the vertex v of maximum weighted degree (among vertices not yet picked) and add it to
the sample R.

2. Divide by two the weight of every edge containing v. If the weight of any edge e falls below
1/
√

2|e|, then set it to 0.

Lemma 3.2. Let d be an arbitrary positive real constant and let H be a hypergraph with n vertices
and O

(
nd
)

edges. Let α be a real such that 0 < α < 1 and let r = min
{
n, b4(d + 1)(logn)/αc

}
.

Assume that each edge of H has at least αn vertices and that n is larger than some appropriate
constant. Then the modified greedy cover algorithm will compute an r-sample that intersects every
edge e of H in at least c|e|r/n vertices, for c = 1

25(1+1/d) ; this represents a fixed fraction of the
“expected” value. The running time is O

(
rnd+1

)
.

Proof: We can obviously assume that r < n, and hence, α ≥ (logn)/n. Let wi(e) be the weight
of edge e after the ith step, with w0(e) = 1, and let Wi =

∑
e∈E+

i
|e|wi(e), where E+

i = { e ∈
E+ |wi(e) > 0 }. The weighted degree δ of the (i + 1)st vertex chosen is at least

∑
e∈E+

i

(
|e| −

hi(e)
)
wi(e)/(n − i), where hi(e) is the number of times the weight of edge e has changed. But

wi(e) > 0 implies that wi(e) ≥ 1/
√

2|e|, therefore |e| ≥ 2hi(e). It follows that

δ ≥
∑
e∈E+

i

(
|e| − hi(e)

)
wi(e)/n ≥

∑
e∈E+

i

|e|wi(e)
2n

=
Wi

2n
.

Deterministic Random Sampling 9

¿From step 2 of the algorithm we have

Wi+1 ≤Wi −
δ

2
min
e∈E+

i

|e| ≤
(

1− α

4

)
Wi.

When the algorithm terminates we have Wr ≤ (1−α/4)rW0. Since W0 is
∑

e∈E |e| = O
(
nd+1

)
and

r < n, we have

Wr ≤ exp
(
−αr/4 + (d+ 1) lnn+O(1)

)
≤ 1
nd/3

. (3.4)

If R intersects an edge e ∈ E+ no more than h times then either 1/2h <
√

2|e|, and hence h > |e|/2,
or we have wr(e) ≥ 1/2h and

Wr ≥ |e|/2h ≥ αn/2h,

so that
h ≥ log n+ logα− logWr.

Since each edge e ∈ E was divided into at least
⌈
|e|/(2αn+ 1)

⌉
edges in E+, the size of R ∩ e is at

least either
αn|e|

4αn+ 2
≥ |e|

6
or, from (3.4),

(log n+ logα− logWr)|e|
2αn+ 1

≥ d|e| logn
6αn+ 3

≥ |e|r
25(1 + 1/d)n

.

It remains to analyze the complexity of the algorithm. The running time is clearly in O
(
rnd+1

)
, if

we assume infinite precision. But, for practical reasons, we prefer to assume that the word-size is
only, say, dlogne. To achieve O

(
rnd+1

)
time, it suffices to show how to compute the weighted degree

of a given vertex in O
(
nd) time. This involves the addition of O

(
nd
)

numbers, each of the form 1/2k

(0 ≤ k ≤ n). Each weight 1/2k can be stored as k in a single word. In O
(
nd
)

time we can write the
degree as a sum

∑
0≤k≤n ak/2

k, where ak is a frequency count which satisfies 0 ≤ ak = O
(
nd
)
. To

evaluate this sum, we add the numbers ak/2k in the order k = n, n− 1, . . . , 1, 0. For that purpose,
we use a virtual computer word made up of n real words (this is generous) and store the sum in
binary by chunks of dlogne bits. To add ak/2k to

∑
k+1≤j≤n aj/2

j, we find the position of the sole
one-bit of 2−k in the virtual word (in constant time) and start the addition right there. The integer
ak is stored over O(1) real words, so we can complete the addition in constant time. The only source
of worry is the possibility of long carries. But we have

∑
k+1≤j≤n aj/2

j = O
(
ndak/2k

)
, therefore no

carry can extend over more than a constant number of real words. This completes the proof.

We have restricted Lemma 3.2 to the case of hypergraphs with a polynomial number of edges
only for the sake of the use which we will make of it below. Obviously, except perhaps for the
complexity analysis, the result generalizes to any hypergraph of any size in a straightforward manner.

Theorem 3.3. Let H be a hypergraph with n vertices and m edges, and let α be an arbitrary real
between 0 and 1 such that each edge of H has at least αn vertices. There exist two constants b and
c > 0 such that running the modified greedy cover algorithm r steps, for any r ≥ b(logn+logm)/α,
will produce an r-sample that intersects every edge e of H in at least c|e|r/n vertices, which
represents a fixed fraction of the “expected” value.

Deterministic Random Sampling 10

Let us now return to our frame F of dimension d and threshold α. Lemma 3.2 gives us a
bootstrapping method for computing an r-cover. We iterate the modified greedy algorithm three
times to get samples R1 ⊇ R2 ⊇ R3, from which we derive R. The details follow. As we have
observed, the hypergraph H has O

(
nd
)

edges, therefore we can apply the theorem to it. We obtain
a sample R1 of size

r1 = min
{
n,
⌊
4(d+ 1)(logn)/α

⌋}
.

We know that R1 intersects every edge e of the frame in at least c|e|r1/n vertices. If r1 ≤ r

then we stop (we’ll justify this later). Otherwise, we extract the sub-hypergraph H1 = (R1, E1),
where E1 = {R1 ∩ e | e ∈ ϕ(R1) }. Let ϕ1 be the H1-induced restriction of ϕ: for each W ⊆ R1,
ϕ1(W) = {R1 ∩ e | e ∈ ϕ(W) }. We easily verify that F1 = (H1;ϕ1) is also a frame of dimension d,
so we can apply Lemma 3.2 to it (replacing α by cα). This provides us a sample R2 ⊆ R1 of size

r2 = min
{
r1,
⌊
4(d+ 1)(log r1)/(cα)

⌋}
.

If r2 ≤ r, again we stop. Otherwise, we iterate through the same process one more time, now with
respect to the hypergraph H2 = (R2, E2). In general, for all i > 1, we have Fi = (Hi;ϕi), where
Hi = (Ri, Ei), Ei = {Ri∩e | e ∈ ϕi−1(Ri) }, and for each W ⊆ Ri, ϕi(W) = {Ri∩e | e ∈ ϕi−1(W) }.
Returning to our iteration, this will produce a sample R3 ⊆ R2 of size

r3 = min
{
r2,
⌊
4(d+ 1)(log r2)/

(
c2α
)⌋}

.

If r3 ≤ r, as usual, we stop. Else, we compute an r-cover for F3 by trying out all possible r-samples
of R3 until we are successful. (We shall assign α below so that success is always guaranted and the
cost of an exhaustive search is very small.)

To summarize, either we get an r-cover for F3 or we obtain one sample Ri (1 ≤ i ≤ 3) which
intersects every edge of Hi−1, where |Ri| ≤ r < |Ri−1| (setting H0 = H and R0 = V). An important
remark is that in the last three cases we can augment the sample which we have obtained into an
r-cover for F . Indeed, precisely because Ri intersects every edge of Hi−1, we can add any vertex
of Ri−1 into Ri without changing the fact that Ri is a cover for Fi−1. But a cover for any Fj is
also a cover for F , which proves our claim. Now, how do we assign α to guarantee the success of
the exhaustive search for an r-cover? We easily check that r3 ≤ b

(
log log logn+ log 1

α

)
/α, for some

constant b. Setting

α =
7d log r
c3r

+
2b
r

log
r

2b
,

we ensure that c3α > 7d(log r)/r. Since the threshold of F3 is at least c3α, Lemma 3.1 guarantees
the existence of the desired r-cover for F3. What is the complexity of the algorithm? If we stop
with R1, R2, or R3, the running time O

(
rnd+1

)
, as indicated by Lemma 3.2. Assume that we end

up computing an r-cover for F3. We can verify that

r3 ≤
(

1
2

+
bc3 log log logn

7d log r

)
r.

Since r < r3 it follows that r = (log logn)O(1) and therefore r3 = (log logn)O(1). Computing the
r-cover of F3 takes no more than O

(
rr+d+1
3

)
= O(n) time. This completes the proof of Theorem

2.1.

Deterministic Random Sampling 11

4. Multi-Hypergraphs with Bounded Vertex Dependency

So far, we have been willing to accept deficiencies as large as logr. But are those covers optimal?
The answer is yes, if we limit ourselves to hypergraphs of large, yet finite, VC-dimension (Pach []).
In this section we look at multi-hypergraphs of bounded vertex dependency, where the situation is
a bit different. We cannot quite eliminate the factor log r, but we present a scheme which will turn
out to have the same effect in the geometric applications discussed later.

Let H = (V,E) be a multi-hypergraph of n vertices and m edges. We shall assume that H has
bounded vertex dependency. This, we recall, means that each edge e has a signature ∅ ⊂ σ(e) ⊆ V .
For each edge e ∈ E and any W ⊆ V , we have |σ(e)| ≤ d and |σ−1(W)| ≤ c, for some constants c
and d. The domain, H(R), of an r-sample R is the collection of edges whose signatures are subsets
of R. An edge e is called t-deficient if (i) e ∈ H(R), (ii) R ∩ e = ∅, and (iii) |e| ≥ tn/r. Given a
subset W ⊆ V and a random r-sample R (from the uniform distribution over the set of r-samples)
we are interested in the conditional expectation

µ(W ; r, t) = E
[

t-deficient edges in H
∣∣R ⊇W]

,

defined if r ≥ |W |. Let E(W ; t) be the multiset of edges e ∈ E of size≥ tn/r such that e∩(σ(e)∪W) =
∅. The following expression will be useful in the next two lemmas:

µ(W ; r, t) =
∑

e∈E(W ;t)

(
n−r̃−σ̃
r−r̃−σ̃

)(
n−r̃
r−r̃
) (

1− |e|
n− r̃ − σ̃

)(
1− |e|

n− r̃ − σ̃ − 1

)
· · ·
(

1− |e|
n− r + 1

)
, (4.1)

where r̃ = |W | and σ̃ = |σ(e)\W |. Each summand is to be understood as 0 if r < r̃+ σ̃ or r > n−|e|.

Lemma 4.1. The inequality µ(∅; r, t) < 2crde−t/2 holds for any t, r such that 2d < r ≤ n.

Proof: ¿From (4.1) and the fact that
(
a−c
b−c
)/(

a
b

)
≤ (b/a)c, we derive

µ(∅; r, t) ≤
∑

f∈E(∅;t)

(r
n

)|σ(f)|
(

1− |f |
n

)r−|σ(f)|
≤
∑
f∈E

(r
n

)|σ(f)|
e−t(r−|σ(f)|)/r.

Rewriting the sum
∑
f∈E(r/n)|σ(f)| as

∑
1≤j≤d(r/n)j × (# edges f ∈ E such that |σ(f)| = j), we

find that
µ(∅; r, t) ≤ e−t/2

∑
1≤j≤d

(r/n)jcnj ,

which completes the proof.

Lemma 4.2. The function µ(W ; r, t) can be evaluated for any r and t within an absolute error of
1/n2 in O

(
nd+1

)
time. With O

(
nd+1

)
preprocessing it is possible to derive µ

(
W ∪ {v}; r, t) from

µ(W ; r, t) in O
(
nd
)

time.

Deterministic Random Sampling 12

Proof: We can rewrite (4.1) as

µ(W ; r, t) =
∑

e∈E(W ;t)

(
n− r̃ − σ̃ − |e|
r − r̃ − σ̃

)/(n− r̃
r − r̃

)
,

or in other words,

µ(W ; r, t) =
∑
e∈E

δ(W ; t, e)
∑

1≤i≤6

fi
(
n, r, |e|, |W |, |σ(e) \W |

)
,

where δ(W ; t, e) is the characteristic function of the multiset E(W ; t) and each fi is a factorial
(or its reciprocal) involving a simple arithmetic expression on its parameters. All the parameters
and the values of δ can be computed in O

(
nd+1

)
time. If we precompute j! and its reciprocal for

j = 1, 2, . . . , n, then we can complete the computation of µ(W ; r, t) in O
(
nd
)

time. If the word-size
is around logn, we can compute each factorial and reciprocal in constant time with a relative error
of at most 1/n2d+4. This gives us a relative error on the computed value of µ(W ; r, t) of less than
1/
(
nd+3

)
. Since the exact value does not exceed cnd, the absolute error is less than 1/n2. To

compute µ
(
W ∪ {v}; r, t) incrementally from µ(W ; r, t) in O

(
nd
)

time it suffices to observe that the
parameters and the values of δ in each summand can be updated in constant time.

¿From Lemma 4.1 we derive µ
(
∅; r, 2dd log re

)
< 1/2, for r larger than some constant. Therefore,

with probability greater than a half, a random r-sample R hits every edge e ∈ H(R) of size |e| >
3dn(log r)/r vertices. Using the technique of conditional probabilities (Raghavan [], Spencer []), we
remove the randomization by computing the sample R incrementally. Starting from W = ∅, we
observe that as long as |W | < r, there exists v ∈ V \W such that µ

(
W ∪{v}; r, t

)
≤ µ(W ; r, t). This

is because
µ(W ; r, t) =

1
n− |W |

∑
v∈V \W

µ
(
W ∪ {v}; r, t

)
.

If we could compute such a vertex v we would add it to our partial sample W , and iterate in this
fashion until |W | = r. In the end, we would have µ(R; r, t) < 1/2, which is to say that there
are no t-deficient edges in H(R). Because of finite precision, however, we must content ourselves
with an approximation, µ̃(W ; r, t), of µ(W ; r, t). ¿From Lemma 4.2 we can choose v such that
µ̃(W ∪ {v}; r, t) ≤ µ(W ; r, t) + 1/n2; for this v we know that µ(W ∪ {v}; r, t) ≤ µ(W ; r, t) + 2/n2.
This method therefore finds an R with µ(R; r, t) ≤ µ(∅; r, t) + 2r/n2. Setting t = 2dd log re we find
that µ(R; r, t) ≤ 1/2 + 2r/n2 < 1, for r large enough (Lemma 4.1). The time complexity follows
directly from Lemma 4.2. Thus we obtain

Lemma 4.3. In O
(
rnd+1

)
time it is possible to compute an r-sample R that leaves no edge of the

hypergraph (3d log r)-deficient, for any r larger than some constant.

This result is really no different from Theorem 2.2. Only the technique is: it sets the stage for
the computation of better covers. Ideally, we would like to say that as long as an edge is of size
> bn/r, for some constant b > 0, a random r-sample which contains its signature will hit it almost
certainly. Such a statement requires looking further into the geometry of the specific applications.
In the meantime, we will finetune our analysis of t-deficient edges.

Deterministic Random Sampling 13

Lemma 4.4. There exists a constant b > 1 such that the inequality µ(∅; r, t) ≤ µ
(
∅; br/tc, 0

)
/2t

holds for any t, r, n, where b ≤ dt ≤ r ≤ n.

Proof: We shall assume that b ≤ dt ≤ r ≤ n, for an appropriately large constant b. Let e be a fixed
edge of H and let R be a random r-sample. We define p(e; r, t) as the conditional probability that
e is t-deficient, given that e ∈ H(R). Assume that e and its signature σ(e) are disjoint. We have(

n− |σ(e)|
r − |σ(e)|

)(
n− |e| − |σ(e)|
br/tc − |σ(e)|

)
p(e; r, 0) =

(
n− |e| − |σ(e)|
r − |σ(e)|

)(
n− |σ(e)|
br/tc − |σ(e)|

)
p(e; br/tc, 0),

from which we derive (
n− br/tc
r − br/tc

)
p(e; r, 0) =

(
n− br/tc − |e|
r − br/tc

)
p(e; br/tc, 0).

Note that the equality still holds if e ∩ σ(e) 6= ∅, since we then have p(e; r, 0) = p(e; br/tc, 0) = 0. It
follows that

p(e; r, 0) ≤
(

1− |e|
n− br/tc

)r−br/tc
p(e; br/tc, 0) ≤ exp

(
−|e|(r − br/tc)
n− br/tc

)
p(e; br/tc, 0).

Assume that |e| ≥ tn/r. Since p(e; r, t) is non-increasing in t we derive that, for b large enough,

p(e; r, t) ≤ p
(
e; br/tc, 0

)
/(2.5)t. (4.2)

We use 2.5 and not 2 to give us a little breathing room for later. Note that if |e| < tn/r and therefore
e is not t-deficient, (4.2) holds trivially. Now we know that (for all t ≥ 0)

µ(∅; r, t) =
(
n

r

)−1 ∑
e∈E

(
n− |σ(e)|
r − |σ(e)|

)
p(e; r, t). (4.3)

We easily verify that for b large enough(
n− |σ(e)|
r − |σ(e)|

)/(n
r

)
≤ (dt)d

(
n− |σ(e)|
br/tc − |σ(e)|

)/(n

br/tc

)
. (4.4)

¿From (4.3) and (4.4) we derive

µ(∅; r, t) ≤ (dt)d
(

n

br/tc

)−1 ∑
e∈E

(
n− |σ(e)|
br/tc − |σ(e)|

)
p(e; r, t),

and from (4.2) and (4.3)
µ(∅; r, t) ≤ (dt)d(2.5)−tµ(∅; br/tc, 0).

We complete the proof by choosing b, and hence t, large enough.

Deterministic Random Sampling 14

Assume now thatH is robust, meaning that there exists a constant a > 0 such that µ(∅; br/tc, 0) ≤
aµ(∅; r, 0), for any t > a. Robustness may seem to be rather unnatural, since it appears to tell us
that a small random sample causes no more deficiencies than a big one. This may actually happen, if
the set H(R) of relevant edges grows fast with the size of R. Hypergraphs originating from geometric
range spaces tend to be robust, as we shall see later in the applications section.

It follows from Lemma 4.4 that, for a constant α large enough and any t, r, n (a < α ≤ dt ≤
r ≤ n), we have µ(∅; r, t) ≤ αµ(∅; r, 0)/2t. Since µ is non-increasing in t, by increasing the value of
α if necessary, we can always extend the validity of the previous inequality to any t ≥ 1. Also, we
can extend it to any t ≤ r by writing

µ(∅; r, t) ≤ α

2t/d
µ(∅; r, 0).

Given W ⊆ V , we are now interested in

Φ(W ; r) = αµ(W ; r, 0)−
∑

1≤t≤r
2t/(2d)µ(W ; r, t).

¿From the previous discussion we can re-adjust α one more time, so that Φ(∅; r) ≥ 0, for all r, n
(α ≤ r ≤ n). Given a random r-sample R, let χ(t) be the number of t-deficient edges. The quantity
Φ(W ; r) is the expected value of αχ(0) −

∑
1≤t≤r 2t/(2d)χ(t), conditioned on W ⊆ R. To say that

it is nonnegative implies the existence of an r-sample R ⊇ W such that for any t (1 ≤ t ≤ r)
χ(t) ≤ αχ(0)/2t/(2d). Because of finite-precision problems we weaken this condition a little and say
that an r-sample R is conformal (where α is understood) if

χ(t) ≤ αχ(0) + 1
2t/(2d)

,

for t = 1, 2, . . . , r. Knowing that Φ(∅; r) ≥ 0 tells us that a conformal r-sample exists. Knowing that
Φ(W ; r) ≥ 0, where |W | = r, tells us that W is conformal.

Once again, we can apply the method of conditional probabilities to make the construction of
a conformal r-sample effective. We begin with W = ∅. As long as |W | < r, we have

Φ(W ; r) =
1

n− |W |
∑

v∈V \W
Φ
(
W ∪ {v}; r

)
,

which implies the existence of v ∈ V \W such that Φ
(
W ∪{v}; r

)
≥ Φ(W ; r). Starting with Φ(∅; r) ≥

0 we thus end up with Φ(R; r) ≥ 0. Because of finite precision, however, we use the approximation
of µ discussed in Lemma 4.2. The relative error on µ is at most 1/

(
nd+3

)
, therefore the absolute

error on Φ is O
(
1/n2

)
. For n large enough, the resulting sample R will satisfy Φ(R; r) ≥ −1/n, and

therefore will be conformal.

Computing Φ(W ; r) can be done by evaluating µ at r points, which takes O
(
rnd+1

)
time

(Lemma 4.2). ¿From there we compute a conformal r-sample in O
(
r2nd+2

)
time. We can do better,

however. Assume that we have computed Φ(W ; r), and in particular, µ(W ; r, 0) and that we wish to
evaluate Φ

(
W ∪{v}; r

)
. We can get µ

(
W ∪{v}; r, 0

)
in O

(
nd
)

time (Lemma 4.2). Going back to the

Deterministic Random Sampling 15

expression of µ(W ; r, t) used in the proof of Lemma 4.2, we can write µ(W ; r, t) = µ(W ; r, t−1)+∆(t),
where

∆(t) =
∑
e∈E

(
δ(W ; t, e)− δ(W ; t− 1, e)

)
×
∑

1≤i≤6

fi
(
n, r, |e|, |W |, |σ(e) \W |

)
.

However,
(
δ(W ; t, e) − δ(W ; t − 1, e)

)
is nonzero for at most one value of t, therefore each ∆(t)

(1 ≤ t ≤ r) can be computed in O
(
nd/r

)
amortized time. This allows us to compute Φ

(
W ∪ {v}; r

)
in O

(
nd
)

time, which gives us a running time of O
(
rnd+1

)
time for computing a conformal r-sample.

We obtain

Lemma 4.5. If H is robust and r is large enough, it is possible to compute a conformal r-sample
in time O

(
rnd+1

)
time.

We are getting closer to our goal of wiping out t-deficiency for any t > 0. To avoid a major
roadblock, however, we must expand the definition of a sample. First, if W is a subset of V we define
HW to be the signature-induced restriction of H to the vertices of W . More precisely, the edges of
HW are of the form e∩W , for all e ∈ H(W). We can regard HW as just another multi-hypergraph
of bounded vertex dependency; note that the constants c and d used for H apply just the same.
We define an r-blossom to be a collection of samples B = (R,R1, . . . , Rk) such that (i) |R| = r, (ii)
k ≤ |H(R)| (counted as a multiset) and (iii) for any edge e that is 1-deficient with respect to R,
there is an integer `(e) such that the sample R`(e) is a subset of e that intersects every edge f of
He(R`(e)) of size |f | ≥ βn/r, for some fixed constant β > 1. The sample R is called the base of
the blossom. The weight of B refers to the total number of 0-deficient edges in He (with respect to
R`(e)), over all edges e in E.

Theorem 4.6. If H is robust and r is large enough, it is possible to compute an r-blossom of weight
at most proportional to the number of 0-deficient edges in H (with respect to the base of B). The
running time is O

(
rnd+1

)
time.

Proof: The first item on the agenda is to compute a conformal r-sample R. To complete it into
an r-blossom, we go through each 1-deficient edge e in turn and perform the following operations.
First, we compute the restriction He explicitly. Let s = d|e|r/n+ r0e2, where r0 is the constant of
Lemma 4.3. If s ≤ |e| then from the same lemma we can compute an s-sample R′ of e that leaves
He free of (3d log s)-deficient edges (with respect to He and R′). We can verify that R′ fits the role
of R`(e). Indeed, let f be an edge of He(R′) of size |f | ≥ βn/r. To see that f intersects R′, it suffices
to check that 3d(log s)|e|/s ≤ βn/r, for β large enough. If s > |e| then we choose e as the sample.
The collection of samples obtained in the process constitutes the r-blossom B. What is its weight?
It is zero if there are no 0-deficient edges, so we can assume that χ(0) > 0. Recall that χ(t) denotes
the number of t-deficient edges in H (with respect to R). We have

weight (B) ≤
∑

1≤t≤r
c(t+ r0)2dχ(t− 1).

Deterministic Random Sampling 16

Because R is conformal and χ(0) > 0,

weight (B) ≤
∑

1≤t≤r
c(t+ r0)2d

(
αχ(0) + 1

)
/2

t−1
2d = O

(
χ(0)

)
.

¿From Lemmas 4.3 and 4.5 we find that the running time is O
(
n2d+2

)
. But again using the geometri-

cally decaying nature of t-deficient edges, we can finetune the analysis. Computing R takes O
(
rnd+1

)
time. For each edge e that is 1-deficient, we can compute the hypergraph He in O

(
|e|d+1

)
time with

proper preprocessing. Computing the sample R`(e) takes O
(
s|e|d+1

)
, where s = d|e|r/n + r0e2.

Because R is conformal the total cost is at most proportional to

rnd+1 +
∑

1≤t≤r

(
tn

r

)d+1

(t+ r0)2
(
αχ(0) + 1

)
/2

t−1
2d .

Since the number of 0-deficient edges in H (with respect to R) is at most crd, the computation of
the blossom takes O

(
rnd+1

)
.

5. Random Sampling and Computational Geometry

We will now illustrate the utility of our techniques by describing an improved method for geometric
divide-and-conquer and looking at higher-dimensional point location. The problem is this: Given an
arrangement of n hyperplanes in d-space and a query point q, find in which face of the arrangement
the point q lies. We will show that with polynomial preprocessing and O

(
nd
)

space, any query can
be answered in O(log n) time. This improves upon Clarkson’s solution [] by a factor of nε space,
not to mention, of course, the tractability of the preprocessing. Much of our solution is based on
an improved method for geometric divide-and-conquer. This is a problem of independent interest,
which we thus treat separately.

5.1. Geometric Divide-and-Conquer

Given n hyperplanes in d-space and any integer r larger than some constant, we wish to subdivide d-
space into O

(
rd
)

simplices, none of which intersects more than bn/r hyperplanes, for some constant
b. A slightly weaker version of the theorem (where bn/r is to be replaced by bn(log r)/r) is used
in (Clarkson [,]) and (Edelsbrunner at al [,]). The basic idea is to pick a random subset R of r
hyperplanes and argue that, with high probability, each simplex of any triangulation T ofR intersects
O
(
n(log r)/r

)
hyperplanes. Theorem 2.2 can be readily applied to make this method deterministic.

To remove the factor log r, however, we must use a more sophisticated approach based on conformal
samples. One difficulty in trying to use conformality is that statements of the form, “the number of

simplices in T that intersect more than kn/r hyperplanes decreases geometrically with k” applies
to the entire set of all possible triangulations and not to each individual one. This justifies the
introduction of a special type of triangulation.

Deterministic Random Sampling 17

We begin with a quick review of fundamental geometric concepts. Details can be found in
(Clarkson [], Edelsbrunner []). A set is polyhedral if it is the intersection of a finite number of closed
halfspaces. For convenience, we define a k-simplex as the relative interior of a polyhedral set of
dimension k with k + 1 vertices. An arrangement A(K) of a finite collection K of hyperplanes in
Ed is the cell complex induced by the hyperplanes. Each element of the complex is the relative
interior of some polyhedral set bounded by hyperplanes in K: it is called a k-face if its dimension
is k. A cell complex is simplicial if its elements are simplices. (We shall use the word “simplex”
when no assumption is made about dimensionality.) A triangulation of d-space is a simplicial cell
complex (i.e., a complex composed exclusively of simplices) that covers Ed. A triangulation of A(K)
refers to a simplicial cell complex which subdivides the arrangement A(K). To handle unbounded
faces uniformly we embed the arrangement in projective d-space. Again, for convenience, we might
want to avoid wrapping around infinity by adding the ideal hyperplane into the arrangement itself.
(This is topologically equivalent to intersecting the arrangement with a large d-ball.) In this way,
unbounded faces of A(K) are no different from bounded ones.

A convenient way to triangulateA(K) (Clarkson []) is to proceed recursively and first triangulate
the n arrangements in (d − 1) space formed by intersecting each hyperplane with the n− 1 others.
Then for each cell (i.e., the closure of a d-face) F of A(K), pick a vertex v (i.e., a 0-face), called the
apex : for each (d − 1)-face f of F that is not incident upon v, and for each (d − 1)-simplex s in f

computed recursively, add the (relative) interior of the convex hull of s∪{v} to the triangulation. In
this way, every d-simplex is formed from the convex hull of its apex and a base (d−1)-simplex. This
works well as long as F is guaranteed to have at least one vertex, which is immediately implied if F
does not contain a whole line. If it does contain a line, then we can rewrite F as the sum of A+G

of an affine space A and a certain polyhedral set G (dim(G) < d) which does have a vertex. We can
therefore triangulate G and use the “simplices” {A+ t | t ∈ G }. We can also avoid these problems
by submitting the input to a random projective perturbation. (Although this might come back to
haunt us if we are shooting for a deterministic algorithm...) To simplify our discussion, we shall
assume that all the hyperplanes considered are in general position. This applies to the hyperplanes
in d-space given as input, as well as their various intersections in lower-dimensional space. Relaxing
these assumptions is easy but tedious. We also give ourselves a Cartesian system of coordinates
(x1, . . . , xd) and assume that the union of the input and the d fundamental hyperplanes, xi = 0,
is in general position, in the sense that any intersection of k input hyperplanes is a (d − k)-flat
(not at infinity) which inherits a local system of coordinates from (x1, . . . , xd−k). We now close this
excursion and refer the reader to (Clarkson []) for proofs of some of the geometric facts which we
just mentioned.

We are now ready to introduce the special type of triangulation to which we alluded earlier.
Our starting point is the observation that the simplices of the triangulation described in the previous
paragraph are entirely specified by a finite number f(d) of hyperplanes of K. How many? at most
2 in 1-space, 5 in 2-space, d + 1 + f(d− 1) in d-space, which gives f(d) = d(d + 3)/2. We define a
universal triangulation scheme τ to be a mapping of any set S of at most d(d + 3)/2 hyperplanes
in (projective) d-space to a finite (possibly empty) set of simplices. The elements of τ(S) are k-
simplices for values of k ranging from 0 to d. Given any finite collection K of hyperplanes in d-space

Deterministic Random Sampling 18

and a subset S of K of size ≤ d(d + 3)/2, let Tτ (K,S) be the set (not a multiset) of simplices in
τ(S) that do not intersect any hyperplane of K, except for the hyperplanes that contain them. By
extension, we define Tτ (K) as the union of the sets Tτ (K,S), over all subsets S of K of size at
most d(d + 3)/2. We require that Tτ (K) form a triangulation of A(K). A universal triangulation
scheme can be regarded as two-step process for triangulating an arrangement: (1) lay out candidate
simplices by checking local conditions; (2) keep empty candidates. The nice feature of this approach
is that the simplices do not have to be tested for intersection among themselves. It is not even clear
at first that a universal triangulation scheme should always exist. But it does.

Lemma 5.1. There exists a universal triangulation scheme in any finite dimension.

Proof: Let S be a collection of ≤ d(d + 3)/2 hyperplanes in projective d-space and compute its
arrangement A(S) in full, using (Edelsbrunner at al. []). Triangulate A(S), using the following
criterion for picking the apex of a face. Choose the vertex of least x1-coordinate (break ties by using
x2, x3, etc.) With the use of homogeneous coordinates, this vertex is always well defined (uniquely),
even if it lies at infinity. This is called the canonical triangulation of S. We define τ(S) as the
collection of simplices in that canonical triangulation. Is τ a valid universal triangulation scheme?
We will show that Tτ (K) itself is the canonical triangulation of K. First, it is clear that any simplex
of the canonical triangulation belongs to τ(S), for some subset S of size ≤ d(d+ 2)/3. Moreover, by
construction, no simplex of Tτ (K) can intersect a hyperplane of K, except if it is entirely contained
in it.

The last thing to check is that no two distinct simplices σ, σ′ ∈ Tτ (K) can intersect. Suppose
that they do and let p be a point of the intersection. Our first observation is that σ and σ′ have the
same dimension k. Suppose that σ is of lesser dimension. Then, p lies in an intersection of codim(σ)
hyperplanes, which intersects but does not contain σ′. Therefore one of these hyperplanes must also
intersect σ′ without containing it, which is a contradiction. It is also easy to see that σ and σ′ have
the same apex q, for otherwise the simplices would lie in two distinct k-faces of A(K), because a face
can have only one apex. But that is impossible without contradicting the absence of intersection
between simplices and non-containing hyperplanes. Now consider the ray from p pointed in the
direction −→qp and let r be the point at which it leaves the intersection of the two simplices. The point
r lies on the base simplices of σ and σ′. Furthermore, since p lies in a nonempty open set, what we
just said holds true of any p taken in a little k-ball. Consequently, the two base simplices lie on the
same (k − 1)-flat.

We have now set the grounds for a proof by induction on the dimension k of the simplices. If
k = 1 then we conclude that σ and σ′ have no choice left but to be identical, which is a contradiction.
If k > 1, we observe that the base (k − 1)-simplices of σ and σ′ intersect in r. Since σ and σ′ have
the same apex, yet are distinct, the base simplices must be distinct. Furthermore, both of them
belong to Tτ (K). The induction hypothesis provides the contradiction.

¿From now on we use the mapping τ of Lemma 5.1 to supply us with a universal triangulation.
Let K be a collection of n hyperplanes in d-space and let H = (V,E) be a multi-hypergraph, with
V and E in bijection with, respectively, K and⋃(

τ(S) |S ⊆ K and |S| ≤ d(d+ 3)/2
)
.

Deterministic Random Sampling 19

Thus, each edge e is associated with a unique simplex s(e) of τ(S) (of dimension between 0 and d),
where S is a subset of K of size at most d(d+ 3)/2. The subset of vertices in correspondence with
S constitutes the signature σ(e) of e. We have |σ(e)| ≤ d(d+ 3)/2 and |σ−1(W)| = O

(
d2d
)

= O(1).
An edge e is defined as the set of vertices whose corresponding hyperplanes intersect the simplex
s(e) but do not contain it.

By construction, H has bounded vertex dependency. Our next step thus is to call upon Theorem
4.6 and compute an r-blossom B = (R,R1, . . . , Rk) of weight at most proportional to the number
of 0-deficient edges in H . According to the theorem this can be done in O

(
rnd(d+3)/2+1

)
time.

¿From the main property of a universal triangulation scheme, it appears that an edge e of H is
0-deficient with respect to R if and only if its associated simplex s(e) belongs to the triangulation
Tτ (R). Conversely, every simplex of Tτ (R) corresponds to at least one 0-deficient edge. If no simplex
of Tτ (R) is 1-deficient, then we have achieved our goal. (By abuse of language, we use R to denote
either the r-sample of vertices or its corresponding set of r hyperplanes in K; also, we say that a
simplex s(e) is k-deficient to mean that the edge e is so.) If there is at least one 1-deficient edge,
then we turn to the samples R1, . . . , Rk to take care of undesirable deficiencies.

Let e be the edge of H associated with Ri. Because e is 1-deficient, more than n/r hyperplanes
of K intersect the simplex s(e) without containment. It is the purpose of Ri to subdivide s(e). To
do so, we compute the intersection of Tτ (Ri) and s(e), which has the effect of subdividing s(e) into
polyhedral sets of bounded size. We can make each set simplicial without multiplying the overall
size by more than a constant factor. This gives us a simplicial complex Si subdividing the closure
of s(e). Now remove from Si all the simplices lying on the boundary of s(e). Doing this for every 1-
deficient edge gives us, along with Tτ (R), a simplicial subdivision P of A(R). Note that several edges
may map to the same simplex s(e), and we might want to keep this in check to avoid unnecessary
duplication of work. The subdivision P is a packing (no two simplices intersect) and a covering (the
union is d-space). However, it might not be a complex. Computing P can be done within the same
time as computing the blossom itself, that is, O

(
rnd(d+3)/2+1

)
time. Indeed, our computation of

the blossom (Theorem 4.6) involves computing the simplices of Tτ (R) and of each Tτ (Ri). Clipping
the latter, re-triangulating them, and forming the complexes Si adds only a constant factor to the
running time. Note that we can also compute the packing directly from the blossom, if we prefer.

What else can we say about P? The packing consists of simplices, every one of which lies
entirely in some simplex of Tτ (R). We distinguish among the simplices of Tτ (R) (first-generation)
and those of the Si’s (second-generation). Recall that the dimension of those varies between 0 and
d. ¿From Theorem 4.6 we derive that each simplex of P intersects (without containment) O

(
n/r
)

hyperplanes of K. The size of P is proportional to the size of Tτ (R), added to the weight of the
blossom. But because R is conformal, this amounts to the number of 0-deficient edges, which is
O
(
rd
)
. We conclude that, given n hyperplanes in d-space and any integer r large enough, there

exists a simplicial packing of size O
(
rd
)
, each of whose simplices intersects O(n/r) hyperplanes.

The packing can be computed in O
(
rnd(d+3)/2+1

)
time.

Theorem 5.2. Given n hyperplanes in d-space and any integer r large enough, there exists a
simplicial packing of size O

(
rd
)

which covers d-space, each of whose simplices intersects O(n/r)
hyperplanes. The packing can be computed in O

(
rnd(d+3)/2+1

)
time.

Deterministic Random Sampling 20

5.2. Point Location Among Hyperplanes

Let K be a set of n hyperplanes in d-space in general position. Preprocess K so that any query
point q can be located in the arrangement A(K) in O(log n) time. By locating the point, we mean
finding the unique face of the arrangementA(K) that contains q. The storage allowed is O

(
nd
)
. It is

clearly sufficient to locate q in the triangulation Tτ (K). To establish our claim, we need to introduce
four separate solutions, A, B, C, and D. Solution A has good query time performance but requires
more space than desired. Solution B bootstraps solution A to reduce the space requirement to a
better, yet still unacceptable, level. Solution C offers a dual perspective: its space performance is
ideal, but the query time is not. Finally, solution D combines the best of solutions B and C. Heavy
use is made of conformal samples throughout these stages. In all cases, we compute and store away
Tτ (K): the triangulation will be used to identify the unique simplex that contains the query point
q.

Solution A is the derandomized version of a data structure for point location due to Clarkson []:
its space requirement is O

(
nd+ε

)
, for any ε > 0, and the query time is O(log n). Translated in our

terminology, the algorithm works as follows. Find a sample R of r hyperplanes, where r is a large
constant, which leaves no edge of the τ -induced hypergraph H (the one of the previous section)
(3d log r)-deficient (Lemma 4.3). Compute Tτ (R) and, for each simplex s of the triangulation,
identify the set Ks of hyperplanes that intersect (but do not contain) the closure of s. Then take the
intersection of all these hyperplanes with the affine closure of s. (Note that the adjective “affine” is
used here to distinguish from topological closure.) For convenience, if s is of dimension k, we also
include its bounding k-flats. In this way, locating q in Tτ (R) and Tτ (Ks), where s is the unique
simplex of Tτ (R) that contains q, will trivially lead to the simplex of Tτ (K) that contains q. (We
will use this pattern time and again.) A simple analysis shows that, for r large enough, this solution
has an O(log n) query time and uses O

(
nd+ε

)
space, for any fixed ε > 0. The preprocessing time is

O
(
nd(d+3)/2+1

)
.

Solution B is an improved version of this algorithm: it has the desired O(log n) query time,
but its storage requirement is O

(
nd logε n

)
, for any ε > 0. Let r(n) = dn/ logne, and let R be

a conformal sample of r(n) hyperplanes (Lemma 4.5). We compute the data structure recursively
with respect to R. The recursion is stopped when the problem has constant size, at which point
exhaustive search is used. As usual, for each simplex s of Tτ (R), we proceed to identify the set Ks

of hyperplanes of K that intersect (but do not contain) the closure of s. Then, as usual, we add
the bounding flats of s, intersect the hyperplanes with the affine closure of s, etc. The difference is
that now we do not recurse on Ks, but instead, we set up the previous data structure with respect
to it. The algorithm is obvious: first determine recursively the simplex s of Tτ (R) that contains q;
then pursue the search in Tτ (Ks) using Clarkson’s algorithm. Let S(n) and Q(n) be respectively
the storage and query time of Solution A. Both S(n) and Q(n) are in O(1), when n is less than a
fixed constant. We have the recurrence relation

S(n) = S
(
dn/ logne

)
+ a

∑
s∈Tτ (R)

|Ks|d+ε +O
(
nd
)
,

Deterministic Random Sampling 21

for some fixed a. Because of conformality, the number of sets Ks whose sizes exceed t logn is at
most cnd/bt, for some constant b, c > 1, therefore

S(n) ≤ S
(
dn/ logne

)
+ a′

(
n

logn

)d∑
t≥0

(t log n)d+ε/bt,

for some constant a′. We can verify by induction that S(n) = O
(
nd log2ε n

)
. For convenience

we can re-adjust ε, so that S(n) = O
(
nd logε n

)
. Using similar arguments, we establish that the

preprocessing time is O
(
nd(d+3)/2+2/ logn

)
. Because of conformality we verify that the size of Ks

is always in O
(
log2 n

)
. Therefore the query time Q(n) satisfies the recurrence:

Q(n) = Q
(
dn/ logne

)
+O(log logn),

which gives Q(n) = O(log n). This concludes our discussion of Solution B.

Solution C is quite similar, except that we set r = dn/2e. Each Ks is now of size O(log n). We
locate q in Tτ (Ks) in O(log n) time by looking at the triangulation directly, without the help of an
extra data structure. To do so, we first locate q in A(Ks) by finding which hyperplane π is right
above q. Then we project q onto π, and we recursively locate the projection in the triangulation of
the (d − 2)-flats on π. This information gives us access to the apex p of a d-simplex whose closure
contains q. Next, we consider the ray emanating from q in direction −→pq and find the first hyperplane
π′ which it intersects. We project q onto π′ (centrally from p) and recurse as before. The time f(d)
required for the location satisfies f(1) = O(log n) and f(d) = 2f(d−1)+O(logn), which is O(log n).
This gives us a query time of O

(
log2 n

)
for locating q in Tτ (K). How about the storage S(n)? We

have S(n) = O(1), when n is less than a fixed constant. Otherwise, we have the recurrence relation

S(n) = S
(
dn/2e

)
+ and

∑
t≥0

t

bt
,

for some constant a, which gives S(n) = O
(
nd
)
. Finally, the preprocessing time follows trivially

from Lemma 4.5. We find that it is in O
(
nd(d+3)/2+2

)
.

We are now ready to describe our last and best solution. Find a conformal sampleR of dn/ logne
hyperplanes, and apply Solution B to R. Then, compute Tτ (R) and, as usual, for each simplex s of
the triangulation, identify the set Ks of hyperplanes that intersect (but do not contain) the closure
of s and give it the usual treatment. Finally, apply Solution C to each Ks. Location in Tτ (R) takes
O(log n) time and requires O

(
(n/ logn)d logε n

)
= O

(
nd
)

space, for ε small enough. On the other
hand, locating q in Ks takes O

(
(log logn)2

)
time, since each Ks is of size O

(
log2 n

)
. For n larger

than a constant, the storage S(n) satisfies

S(n) = a(n/ logn)d
∑
t≥0

(t logn)d

bt
,

for some constant a, which gives S(n) = O
(
nd
)
. The preprocessing time is O

(
nd(d+3)/2+2/ logn

)
.

This proves our claim that location among n hyperplanes can be performed in O(log n) query time,
using O

(
nd
)

space.

Deterministic Random Sampling 22

Theorem 5.3. Given an arrangement of n hyperplanes in d-space it is possible to locate a query
point in O(log n) time, using O

(
nd
)

storage. The time required for computing the data structure
is O

(
nd(d+3)/2+2/ logn

)
.

6. Conclusions

Beside improving various complexity bounds, we believe that the main contribution of this paper
is to set the dual pursuits of probabilistic and deterministic geometric algorithms on a parallel
course. On the algorithmic side, an interesting algorithmic issue is to lower the complexity of
our deterministic constructions. Finally, a more exhaustive investigation of applications should be
undertaken.

Acknowledgments: We wish to thank K. Clarkson, J. Pach, and J. Spencer for valuable comments
about this work.

REFERENCES

1. Agarwal, P., Sharir, M. Red-blue intersection detection algorithms with applications to motion
planning and collision detection, Proc. 4th Ann. ACM Sympos. Comput. Geom. (1988), 70–80.

2. Alon, N., Babai, L., Itai, A. A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. of Alg. 7 (1986), 567–583.

3. Clarkson, K.L. A randomized algorithm for closest-point queries, SIAM J. Comput. 17 (1988),
830–847.

4. Clarkson, K.L. New applications of random sampling in computational geometry, Disc. Comp.
Geom. 2 (1987), 195–222.

5. Clarkson, K.L. Applications of random sampling in computational geometry, II , Proc. 4th Ann.
ACM Sympos. Comput. Geom. (1988), 1–11.

6. Clarkson, K.L., Shor, P.W. Algorithms for diametral pairs and convex hulls that are optimal,
randomized, and incremental, Proc. 4th Ann. ACM Sympos. Comput. Geom. (1988), 12–17.

7. Clarkson, K.L., Tarjan, R.E., Van Wyk, C.J. A fast Las Vegas algorithm for triangulating a
simple polygon, Proc. 4th Ann. ACM Sympos. Comput. Geom. (1988), 18–22.

8. Edelsbrunner, H. Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Ger-
many, 1987.

9. Edelsbrunner, H., Guibas, L.J., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl,
E. Implicitly representing arrangements of lines or segments, Proc. 4th Ann. ACM Sympos.
Comput. Geom. (1988), 56–69.

10. Edelsbrunner, H., Guibas, Sharir, M. The complexity of many faces in arrangements of lines
and of segments, Proc. 4th Ann. ACM Sympos. Comput. Geom. (1988), 44–55.

11. Edelsbrunner, H., O’Rourke, J., Seidel, R. Constructing arrangements of lines and hyperplanes
with applications, SIAM J. Comput. 15 (1986), 341–363.

12. Erdös, P., Spencer, J. Probabilistic methods in combinatorics, Academic Press, New York, 1974.
13. Haussler, D., Welzl, E. Epsilon-nets and simplex range queries, Disc. Comp. Geom. 2, (1987),

127–151.
14. Joffe, A. On a set of almost deterministic k-independent random variables, Ann. of Prob. 2

(1974), 161–162.
15. Lovász, L. On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975),

383–390.
16. Lovász, L. Combinatorial problems and exercises, North-Holland, 1979.
17. Pach, J. Private communication, 1988.
18. Pach, J., Spencer, J. Explicit codes with low covering radius, IEEE Trans. Information Theory,

to appear.
19. Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing inte-

ger programs, Proc. 27th Annu. IEEE Symp. on Foundat. of Comput. Sci. (1986),
10–18.

23

20. Reif, J.H., Sen, S. Optimal randomized parallel algorithms for computational geometry, Proc.
16th Internat. Conf. Parallel Processing, St. Charles, IL, 1987. Full version, Duke Univ. Tech.
Rept., CS–88–01, 1988.

21. Spencer, J. Puncture Sets, J. Combinat. Theory A, 17 (1974), 329–336.
22. Spencer, J. Ten lectures on the probabilistic method, CBMS-NSF, SIAM, 1987.
23. Tarjan, R.E., Van Wyk, C.K. An O(n log logn)-time algorithm for triangulating a simple poly-

gon, SIAM J. Comput. (1988).
24. Sauer, N. On the density of families of sets, J. Combinat. Theory A, 13 (1972), 145–147.
25. Vapnik, V.N., Chervonenkis, A.Ya. On the uniform convergence of relative frequencies of events

to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.
26. Welzl, E. Partition trees for triangle counting and other range searching problems, Proc. 4th

Ann. ACM Sympos. Comput. Geom. (1988), 23–33.

24

