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1 Introduction

The goal of this paper is to prove a theorem about the density of points for
which a purely iterative root finding method converges to a root.

For z ∈ C and f(z) =
∑d
i=0 aiz

i consider a map

Tf(z) =
P (z, f, f ′, . . . , f (l))
Q(z, f, f ′, . . . , f (l))

where P and Q are polynomials over C. For each f , Tf is a map from
C∪{∞} to itself which we think of as an iteration in a root finding method.
We require that

1.

Tf (z) =
zsP0(f, zf ′, z2f ′′, . . .)
zs−1Q0(f, zf ′, z2f ′′, . . .)

(1.1)

where P0 and Q0 are homogeneous polynomials of the same degree.

2. Tf (z) depends only on z and the roots r1, . . . , rd of f , and

A(Tf(z)) = TAf (Az)

for any linear map A: z 7→ az + b, where

Af(z) = ad(z − Ar1) . . . (z − Ard)
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for
f(z) = ad(z − r1) . . . (z − rd).

3. Tf (r) = r, |T ′f(r)| < 1 for any root r of f .

4. Tf (∞) =∞, |T ′f(∞)| > 1 for any f of degree > 1.

To measure the density of convergent points for Tf , let Pd denote the
polynomials of degree d with roots in the unit ball. For a polynomial f , let

ΓT,f = {z : T nf (z)→ a root of f as n→∞}

where T nf is the n-th iterate of Tf (i.e. ΓT,f is the set of points converging
to a root of f under the iteration Tf). Let

AT,f = |ΓT,f ∩B2(0)| .

Then AT,f/4π is the probability that a random point in B2(0) converges to
a root.

Theorem 1.1 Let T satisfy (1)-(4). Then for any d there is a c > 0 such
that

AT,f > c ∀f ∈ Pd.
Furthermore, we have

AT,f,r > c ∀f ∈ Pd, ∀r with f(r) = 0,

where AT,f,r denotes the contribution to AT,f from the root r of f .

More precisely,
AT,f,r = |ΓT,f,r ∩B2(0)|

where
ΓT,f,r = {z : T nf (z)→ r as n→∞}

The above density theorem was conjectured to hold for Newton’s method
by Smale in [Sma85]. This conjecture was proven in [Fri86]; the proof used
some special properties of Newton’s method and explicit bounds on the
constants as a function of d were given. The above theorem applies to a
much larger class of root finding methods, though no explicit bounds on c
are given.

Examples of T satisfying (1)-(4) are
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1. Newton’s method, Tf (z) = z − f
f ′ .

2. Modified Newton’s method, Tf(z) = z − h f
f ′ with a constant h, 0 <

h < 1.

3. Taylor’s method (see [Atk78])

Tf (z) = z +
k∑
i=1

di

dti

(
φt(z)
i!

)∣∣∣∣∣
t=0

hi

where φt(z) solves

dφt(z)
dt

= − f(z)
f ′(z)

, φ0(z) = z

with k a positive integer and h a positive number sufficiently small
(depending on k).

4. Incremental Euler’s method (see [Atk78])

Tf (z) = z +
k∑
i=1

(−hf(z))k

k!
g(k)(f(z))

with g = f−1, k a positive integer, and h positive and sufficiently
small.

5. Any iterate of a T satisfying (1)-(4). This shows that maps satisfying
(1)-(4) may contain extraneous attractive fixed points. For example,
Newton’s method, even applied to polynomials of degree as low as
three, can contain attractive periodic points of period two. Therefore
the second iterate of Newton’s method can have extraneous attractive
fixed points.

To prove theorem 1.1, take any sequence fn ∈ Pd; we will show thatAT,fn

can not approach 0 as n tends to infinity. By passing to a subsequence we
can assume each of the fn’s coefficients, or equivalently each of fn’s roots,
converge. If AT,f were continous in f at the limit of the fn’s then we would
be done; the fact that AT,f can be discontious at f ’s having multiple roots
makes the theorem more interesting. If the limit of fn has at least one
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isolated root, one would get enough of a contribution to AT,fn from such
an isolated root (for large n) to show that AT,fn is bounded away from
zero. However, if all of fn’s roots tend to cluster into several groups as
n → ∞, we must look at the limiting geometry of each individual cluster
to estimate AT,fn. So fix a cluster, and“blow-up” the picture of the roots
at that cluster so that, while they remain in some bounded region, they
separate into smaller subclusters. Again, if the blow-up of at least one
cluster has as least one isolated root, we are done; the reason is that the
isolated root’s contribution to ΓT,fn contains a sequence of balls which, from
the point of view of the subcluster, tend to ∞ and whose radii get larger.
These balls, from the point of view of the original scale of the problem,
look like a sequence of balls whose radii get smaller and smaller and whose
center converges to the cluster’s limit point. It is not hard to see that in
the original scale of the problem, the largest ball is of appreciable size, thus
bounding AT,fn from below.

If none of the clusters has an isolated root, we look at the geometry
of each subcluster, blowing-up the picture at each subcluster. Since the
blowing-up process separates a cluster of roots into at least two distinct
subclusters, successive blowing-up eventually isolates the roots. One can
then find balls in ΓT,fn for each root in the blow-up of the picture which
isolates it, and back-up through the blow-ups until reaching the original
scale of the problem, finding balls in each scale of blow-up which lie in
ΓT,fn. The fact that this can be done for each root proves, in addition, the
second part of the theorem.

The basic estimate for the existence of the aforementioned balls is
lemma 2.2, proved in section 2. In section 3 we describe the blowing-up
process more precisely, and show how lemma 2.2 can be applied backwards
through the blowing-up process.

2 Some Preliminary Results

Let g:N → C∪{∞} be a complex analytic map, for an open N ⊂ C∪{∞}.
Let z ∈ N be a repelling fixed point, i.e. g(z) = z and |g′(z)| > 1.

Lemma 2.1 For any open A ⊂ C we have that for n sufficiently large,

gn {Bε(z)} ∩A 6= ∅.
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Proof Apply Cauchy’s formula for (fgn)′(z), where f is a Möbius function
taking a point in A to∞, and where the contour is a small circle around z.

For our maps T , we have that∞ is a repelling fixed point so the lemma
can be applied.

From condition (1)-(4) on T it is easy to see that

T ′f (∞) = q(d) =
Q0(1, d, d(d− 1), . . .)
P0(1, d, d(d− 1), . . .)

is a rational funciton of d independent of f , and that if r is a k-tuple root,
then

T ′f (r) =
P0(1, k, k(k− 1), . . .)
Q0(1, k, k(k− 1), . . .)

=
1

q(k)
.

For any f we have that for z in a neighborhood of ∞,

Tf (z) =
z

q(d)
+O(1)

and

T ′f (z) =
1
q(d)

+O

(
1
|z|

)
(2.1)

and T−1
f is defined locally. We have

Tf(z)
z

=
1
q(d)

+O

(
1
|z|

)

and so for |z| sufficiently large, we have z0 = z, z−1, z−2, . . . given by Tf (z−i) =
z−i+1 has |z−n| growing like (q(d) − ε)n for any ε > 0 depending on how
large |z| is, and thus

z−n
z

=
n−1∏
i=0

(
1−O

(
1
|z−i|

))
q(d)

= qn(d)
(
1−O

(
1
|z|

))
. (2.2)
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The mean value theorem and equation 2.1 yield for, say, r < |z|/2,

T nf {Br′(z−n)} ⊂ Br(z) (2.3)

with

r′ = r qn(d)
(
1−O

(
1

|z−n+1|
+ · · ·+ 1

|z|

))

= r qn(d)
(
1−O

(
1
|z|

))
. (2.4)

Let
z̃ = lim

n→∞
z−n
qn(d)

,

the limit existing by virtue of equation 2.2. For any r < |z|/2, using
equations 2.3 and 2.4, we have

T nf
{
Brqn(d)/2 (z̃qn(d))

}
⊂ Br(z) (2.5)

for n sufficiently large (depending on r).
Next we would like to obtain a version of equation 2.5 for polynomials

close to f in a certain sense. Fix d, D, and f , and consider the set Ff,δ,D
of polynomials

g(z) = (z − s1) . . . (z − sd+D)

with si ∈ Bδ(ri) for 1 ≤ i ≤ d and |si| > 1/δ for i > d.

Lemma 2.2 For any sufficiently large z and r < |z|/2 there is a c, δ0 and
n0 such that if δ < δ0 and n > n0 we have

T ng
{
Brqn(d)/2(z̃qn(d))

}
⊂ Br(z)

if
|z̃|qn(d) < c

δ

for all g ∈ Ff,δ,D.
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Proof Dividing both numerator and denominator by zs−1gdeg(P0) in con-
dition (1) on T yields

Tg(z) =
zP0(1, z g

′

g
, z2 g′′

g
, . . .)

Q0(1, z g
′

g
, z2 g′′

g
, . . .)

.

For |z| sufficiently large and, say, ≤ 1
2δ

we have∣∣∣∣∣f ′f − g′

g

∣∣∣∣∣ ≤
d∑
i=1

∣∣∣∣ 1
z − ri

− 1
z − si

∣∣∣∣+ d+D∑
j=d+1

∣∣∣∣∣ 1
z − sj

∣∣∣∣∣
=

∑∣∣∣∣∣ si − ri
(z − ri)(z − si)

∣∣∣∣∣+∑ 1
|z − si|

= O

(
δ

|z|2 + δ

)
.

Similarly we have∣∣∣∣∣f (k)

f
− g(k)

g

∣∣∣∣∣ ≤ ∑
1≤i1<...<ik≤d

k!
∣∣∣∣∣ 1
(z − ri1) . . . (z − rik)

− 1
(z − si1) . . . (z − sik)

∣∣∣∣∣+
∑

1≤i1<...<ik≤d+D, ik>d
k!
∣∣∣∣∣ 1
(z − si1) . . . (z − sik)

∣∣∣∣∣
= O

(
δ

|z|k+1
+

δ

|z|k−1
+

δ2

|z|k−2
+ · · ·+ δk

)

= O

(
δ

|z|k+1
+

δ

|z|k−1

)
;

in the last line we have used the fact that for sufficiently large z and n we
have |z|δ < 1 (which follows from the second equation in the statement of
the lemma). Thus ∣∣∣∣∣zk f (k)

f
− zk g

(k)

g

∣∣∣∣∣ = O

(
δ

|z| + δ|z|
)

and so

Tg(z) = Tf (z)
(
1 +O

(
δ

|z| + δ|z|
))

, (2.6)

T ′g(z) = T ′f (z)
(
1 +O

(
δ

|z| + δ|z|
))

.
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We caution the reader that the big-O notation above is as the quantity
in parenthesis tends to zero, and that the constants in the big-O notation
depend on d and D. Now fix a z sufficiently large and a small ε so that
z0 = z, z−1, z−2, . . . defined as before grow like a geometric series. Then,
using equation 2.6, we see that for δ sufficiently small we have that y0 =
z, y−1, y−2, . . . , y−n given by Tg(y−i) = y−i+1 grows like a geometric series,
as long as |y−n| < c/δ for c sufficiently small. Then we get

y−n = z−n
n−1∏
i=0

(
1 +O

(
δ

|y−i|
+ δ|y−i|

))

= z−n

(
1 +O

(
δ

|z| + δ|y−n|
))

.

Using the chain rule we have

(T ng )′(w) =
n−1∏
i=0

T ′g(T
i
g(w))

=
(

1
q(d)

)n (
1 +O

(
δ

|T ng (w)| + δ|w|
))

assuming |T ng (w)| is sufficiently large and |w| ≤ c/δ. The mean value theo-
rem then implies

T ng {Br′(z−n)} ⊂ Br(z)

where

r′ = rqn(d)
(
1 +O

(
δ

|z| + δ|z−n|
))

.

Hence, as before, we get that for sufficiently large n,

T ng
{
Brqn(d)/2(z̃qn(d))

}
⊂ Br(z)

as long as |z̃|qn(d) < c
δ

for c sufficiently small.

3 Successive Normalizations

The difficulty in proving theorem 1.1 is that AT,f is not necessarily contin-
uous when f has multiple roots. Let f1, f2, . . . be a sequence in Pd, and
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r1
1, r

2
1, . . . a sequence of respective roots for which

lim
n→∞

AT,fn,rn1
= inf

f∈Pd, f(r)=0
AT,f,r.

By passing to a subsequence we may assume that

fn(z) = (z − rn1 )e1 . . . (z − rnk0
)ek0

with
e1 + · · ·+ ek0 = d

and
rni 6= rnj ∀n, i < j ≤ k0.

By passing to a subsequence we can assume

rni → ri as n→∞.

If r1 is isolated, i.e. e1 = 1, then it would be easy to show that for some
δ > 0 we have

Bδ(rni ) ⊂ ΓT,fn
for all n sufficiently large, and thus

inf
f∈Pd, f(r)=0

AT,f,r > 0

(the details of the argument appear as part of the proof later in this section).
If not, we can assume

r1 = r2 = . . . = rk1

and rj 6= r1 for j > k1. We will now analyze more carefully the way in
which rn1 , . . . , r

n
k1

converge to r1.
For z1, . . . , zm ∈ C not all the same, we define the normalization of

z1, . . . , zm centered at z1 to be the unique linear map

g(z) = az + b, a ∈ R, a > 0, b ∈ C

such that ∑
i<j

|g(zi)− g(zj)| = 1,

and g(z1) = 0.
By passing to a subsequence we can assume that
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1. the normalizations of rn1 , . . . r
n
k0

, gn(z) = anz+ bn, centered at rn1 have
gn(rni )→ si as n→∞, and

2.
q
b− logq1 anc
1 an → a (3.1)

as n→∞ for some a ∈ [1/q1, 1] where

q1 = q

 k1∑
i=1

ei


and where bβc denotes the largest integer ≤ β.

Clearly ∑
i<j

|si − sj| = 1,

and so we have
s1 = · · · = sk2

and sj 6= s1 for j > k2 where k2 < k1. In other words, by normalizing we
separate the first k1 roots into smaller groups. By repeated normalization
we will finally separate rn1 from all other rni ’s. Now we start with the deepest
level of normalization and work up, proving a density lower bound for each
level.

Let the deepest level be `, and let

hn(rni )→ ti for 1 ≤ i ≤ k`

where hn is the normalization of rn1 , . . . , rnk` centered at rn1 . We have∑
i<j

|ti − tj| = 1,

t1 = 0, and ti 6= t1 if i > 1. Consider

f̃(z) = (z − t1)e1 . . . (z − tk`)ek` .

Since Tf̃ (t1) = t1, |T ′f̃(t1)| < 1, and ∞ is a repelling fixed point for Tf̃ we
have open sets E, arbitrarily near ∞, such that T n

f̃
{E} → t1 as n → ∞.

Take a point z large enough so that lemma 2.2 holds, with Bε(z) converging
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to t1 uniformly under Tf̃ for some ε > 0 (we can assure uniform convergence
by assumption (3) of section 1). We have

Bεqm
`
/2(z̃qm` ) ⊂ ΓT,f̃

for m sufficiently large where z̃ is as in lemma 2.2 and

q` = q

 k∑̀
i=1

ei

 .
Let h′n be the normalization of the `−1-th level, i.e. of rn1 , . . . , r

n
k`−1

centered
at rn1 ,

h′n(z) = a′nz + b′n

and let
hn(z) = anz + bn.

We have that
an
a′n
q
b− logq`

(an/a′n)c
` → a

as n → ∞ for some a ∈ [ 1
q`
, 1] (at each level we normalize and pass to a

subsequence satisfying a condition analogous to that of equation 3.1 as well
as the preceeding condition). We want to prove that

Bε0(z0) ⊂ ΓT,h′nfn (3.2)

for all sufficiently large n, where

z0 = z̃aq−M`
ε0 = εaq−M` /4

for some positive integer M ; this will complete the first stage moving back-
wards through the normalizations, each time finding a ball of fixed size
with respect to the current normalization in ΓT,fn for sufficiently large n.
To prove equation 3.2, consider first

hnfn(z) = (z − hn(rn1 ))e1 . . . (z − hn(rnk`))
ek` .

We claim that for n sufficiently large we have

Bε(z) ⊂ ΓT,hnfn .
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To see this, we note that for some small η > 0 we have

|z − t1| ≤ η =⇒ |Tf̃(z)− t1| ≤ (1− µ)|z − t1|,

by assumption (3) of section 1, for some µ > 0, and that for some large N ,

TN
f̃
{Bε(z)} ⊂ Bη/2(t1)

by the uniform covnergence. Estimating as in lemma 2.2 (note that for any
δ we have hnfn ∈ Ff̃ ,δ,D for n sufficiently large and D = d− q`) we get that
for n sufficiently large

|z − t1| ≤ η =⇒ |Thnfn(z)− t1| ≤ (1− µ/2)|z − t1|
=⇒ z ∈ ΓT,hnfn

and that
TNhnfn {Bε(z)} ⊂ Bη(t1) ⊂ ΓT,hnfn

using hn(rn1 ) = t1 and that for any y ∈ Bε(z) we have y, Tf̃(y), T
2
f̃
(y), . . .

stays away from the rni ’s with i > 1. Now we apply lemma 2.2 to conclude
that for m sufficiently large we have

Tmhnfn

{
Bεqm

`
/2(z̃qm` )

}
⊂ Bε(z) ⊂ ΓT,hnfn

so that
Bεqm

`
/2(z̃qm` ) ⊂ ΓT,hnfn

as long as |z̃|qm` < c/δ for some c sufficiently small, where 1/δ is a lower
bound on hn(rni ) for i > k`. Rescaling by a factor of an/a′n and translating
appropriately we get

Bεqm
`
an/(2a′n)(z̃qm` an/a

′
n) ⊂ ΓT,h′nfn

if
|z̃|qm` an/a′n < cmin

i>k`
h′n(r

n
i ) < c′. (3.3)

Taking

m(n) = blogq`
a′n
an
c −M
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where M is sufficiently large to ensure equation 3.3 holds, we get that for
sufficiently large n,

Bεaq−M
`

/4(z̃aq
−M
` ) ⊂ ΓT,h′nf ,

the 4 in εaq−M` /4 appearing to account for the fact that

an
a′n
q
m(n)
`

approaches, rather that equals, aq−M` as n → ∞. Thus equation 3.2 is
established.

Now that we have a statement of the form

Bε0(z0) ⊂ ΓT,h′nfn ,

we proceed to get a statement of the form

Bε1(z1) ⊂ ΓT,h′′nfn ,

where h′′n is the normalization at the ` − 2-th level, i.e. the normalization
of rn1 , . . . , r

n
k`−2

centered at zn1 . To do this we consider

f̂(z) = (z − t1)e1 . . . (z − tk`−1
)ek`−1 .

Using lemma 2.1 we can find an arbitrarily large z with an ε so that for
some N

TN
f̂

{
Bε/2(z)

}
⊂ Bε0(z0).

Now we repeat the argument of before to conclude

TNh′nfn {Bε(z)} ⊂ Bε0(z0)

i.e.
Bε(z) ⊂ ΓT,h′nfn

(with uniform convergence) for n sufficiently large, and that

T
m′(n)
h′′nfn

{Bε1(z1)} ⊂ ΓT,h′′nfn

(again with uniform convergence) for some m′(n) and fixed ε1, z1.
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Repeating the above argument ` − 2 more times yields that for all n
sufficiently large we have

Bε(z) ⊂ ΓT,fn
for some fixed ε and z with z very near rn1 . Hence

lim
n→∞

AT,fn,rn1
> πε2 > 0

and theorem 1.1 is proven.
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