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0. Abstract

Let Pd be the set of polynomials over the complex numbers of degree d with all its
roots in the unit ball. For f ∈ Pd, let Γf be the set of points for which Newton’s method
converges to a root, and let Af ≡ |Γf ∩B2(0)|/|B2(0)|, i.e. the density of Γf in the ball of
radius 2 (where | | denotes Lebesgue measure on C viewed as R2). For each d we consider
Ad, the worst-case density (i.e. infimum) of Af for f ∈ Pd. In [S], S. Smale conjectured
that Ad > 0 for all d ≥ 3 (it was well-known that A1 = A2 = 1). In this paper we prove
that (

1
d

)cd2 log d

≤ Ad

for some constant c. In particular, Ad > 0 for all d.
Remark: Our definition of Ad differs slightly from that in [S], but the conclusions hold

for Ad as defined in [S] as well.

1. Introduction

Newton’s method is a method for finding the zeros of a function, f . One starts with
an initial guess, z0, of a zero of f , and then generates a sequence of successive guesses
according to the rule

zi+1 ←− zi −
f(zi)
f ′(zi)

. (1.1)

Intuitively, using the value of f and f ′, we locate the unique zero of the tangent line to f
at zi; this is the next guess, zi+1.

It is known that for any differentiable function, f , and any root, r, of f , the sequence
{zi} converges to r if our first guess, z0, is close enough to r. We define the basin of r to
be the set of points in C for which Newton’s method converges to r.

There are various forms of Newton’s method. We will assume that f is a polynomial

f(z) = a0z
n + · · ·+ an, ai ∈ C, (1.2)

so that f and f ′ are easy to compute. We will view equation (1.1) as a map

Tf (z) = z − f(z)
f ′(z)

,
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from C ∪ {∞} to itself. In this paper we will study the set Γf , defined to be the set of
points, z0, for which Newton’s method works, i.e. {zi} converges to a root of f .

In this paper we will use a geometric interpretation of Newton’s method, involving a
relation that goes back at least 100 years–

Theorem 1.1 (Lucas, 1874): Let f(z) be a polynomial with coefficients in C. Then the

zeros of f ′ lie in the convex hull of the roots of f.

Proof: For a set S ⊂ C, we denote its closed convex hull by 〈S〉. It is easy to check that

f ′(z) = f(z)
d∑
i=1

1
z − ri

, (1.3)

where r1, . . . , rn are the roots of f . Assume that f ′ has a root, z, outside 〈rj〉, the convex
hull of the roots. Then the vectors from z to the ri’s all lie in one side of a half-plane
through z. Then the vectors z − ri all lie to one side of a half-plane. Hence the 1

z−ri ’s lie
to one side of a half-plane (not the same half-plane, rather the one you get by reflecting
through the x-axis). Hence the sum of the 1

z−ri ’s cannot vanish, which is a contradiction.

Given a polynomial, f , the Newton map for f ,

Tf (z) = z − f(z)
f ′(z)

, (1.4)

has a geometric interpretation in terms of f ’s roots. For a polynomial f(z) = (z−r1) . . . (z−
rd), we can write Tf as

z +
1∑d

i=1
1

ri−z
. (1.5)

For example, if z = 0,

Tf (0) =
1∑d
i=1

1
ri

. (1.6)

This is sometimes called the harmonic sum of the ri’s. Looking at equation (1.5) we see
that Tf (z) looks like Tf (0) with z as the origin. From equation (1.5) we can also see that
if we change z and the roots of f , by a translation, rotation, and/or dialation, (i.e. a linear
map az + b, with a, b ∈ C), then the new Tf (z) is just the old Tf (z) transformed in the
same way.

We will give an example of the geometric point of view. By a wedge, W, we mean a
subset of C of the form

W = {z : θ1 ≤ arg(z − r) ≤ θ2}, (1.7)

where arg(z) is the angle z makes with the positive x-axis; r is called the vertex of the
wedge, and θ2 − θ1 its angle. A wedge is convex iff its angle is ≤ π.
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Theorem 1.2: If W is a convex wedge at z containing the {ri}’s, then Tf (z) is contained

in W .

Proof: The ri − z’s lie in a wedge V = W − z about the origin; by W − z we mean
the points {w − z : w ∈ W}. Thus the 1

ri−z ’s lie in the wedge V ′, the reflection of V
through the x-axis. Since V ′ is a convex wedge, then it also contains their sum

∑
1

ri−z . Its
reciprocal is contained in the original wedge, V , and hence Tf is contained in W = V + z

(= {v + z : v ∈ V }).

Returning to the study of Γf , we would like to know how likely a randomly chosen
point in C will lie in Γf .

Let Pd denote the polynomials of degree d with roots in the unit ball. For a function
f , let Af denote the density of Γf in the ball or radius 2, i.e.

Af ≡
|Γf ∩B2(0)|
|B2(0)| , (1.8)

where |C| denotes the area of C. For a positive integer d, let

Ad ≡ inf{Af : f ∈ Pd}. (1.9)

In this paper we will prove that Ad > 0 for all d.

There are several reasons why we study Ad:

(1) It is easy to ensure f ∈ Pd.

Fact: If f(z) = a0z
d + · · · and |a0| >

∑d
i=1 |ai|, then f ∈ Pd.

Proof: If |z| > 1, then a0z
d is larger in absolute value than the sum of all the lower order

terms of f . Hence if |z| > 1, then z cannot be a root of f .

(2) By rescaling we can assume that (1) holds. Since

f(zc) = (a0c
d)zd + (a1c

d−1)zd−1 + · · · , (1.10)

the a0c
d will dominate if we take c large enough.

(3) We need some restriction on f to prove a density theorem. It is well known that for
any d ≥ 3 there is a polynomial f for which Newton’s method does not converge on
some open set in C (see, for example, [S]). It follows that for any bounded set we can
find a polynomial of degree d for which Newton’s method does not converge anywhere
on this bounded set, simply by taking an appropriate translation and dilation of f .

The main theorem of the paper is
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Theorem 1.4: Ad > 0 for d ≥ 3. More precisely, there is a constant c1 such that

(
1
d

)c1d2 log d

≤ Ad. (1.11)

We caution the reader to note that Af is not continuous in f ’s coefficients or its roots.
For example, for f(z) = z3 Newton’s method works for any initial guess. Yet one can show
that there exists a constant c < 1 such that there exist polynomials g, arbitrary close to
f , with Ag ≤ c.

We will introduce some useful notations for the rest of the paper.
Let E be a subset of C. By sE, s ∈ R, we mean the set E dilated by s, i.e.

sE ≡ {s · e : e ∈ E}.

By sEz we mean sE with z viewed as the origin, i.e.

sEz ≡ {z + s(e− z) : e ∈ E}.

In particular sE0 = sE.
Given a convex polygon, P , and a vertex, v, of the polygon, the interior angle at v

is the angle determined by the two line segments of the boundary of P meeting v; the
exterior angle at v it the angle opposite the interior angle (see figure 1).

Figure 1

The exterior wedge at v is the wedge bounded by the exterior angle at v. If P is a
degenerate polygon, that is to say a line segment, then the exterior wedge is the ray from
v to ∞ which is colinear and opposite the line segment.

In this paper we use many different constants. Rather that give each one a different
name, we will denote them all by c (unless some confusion will occur).
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In §2 we describe some regions in which Newton’s method converges. In §3 we estimate
the area of one of these regions, yielding the lower bound on Ad. Some of the calculations
used in these sections are postponed until appendix A.

We remark that as we send this paper for publication, A. Manning proved that Γf has
density 1/(d2 log2 d) in the ball of radius d, see [M]; one can use this to improve our density
bound to 1/dcd log d. Also, an earlier version of this paper, [F], appeared in a conference.

The author would like to thank Steve Smale for many helpful discussions.

2. Invariant Curves

For background, let us begin with the question of how fast does Newton’s method
converge. One can do both local and assymptotic analysis as follows—

Let f be a polynomial of degree d, and let r be a root of f of multiplicity k. An easy
calculation shows

T ′f (z) =
f(z)f ′′(z)
(f ′(z))2

. (2.1)

It follows that at r we have
T ′f (r) = 1− 1

k
. (2.2)

Hence if r is a simple root of f we get T ′f (r) = 0 so that

Tf (r + ε) = r + aε2 + · · · . (2.3)

In other words, Newton’s method is quadratically convergent. For a root of multiplicity
> 1, Newton’s method is linearly convergent. That is

Tf (r + ε) = r +
(

1− 1
k

)
ε+ . . . , (2.4)

and so

Tn(r + ε) = r +
(

1− 1
k

)n
ε+ · · · . (2.5)

Assymptotically, for |z| � r’s, we have

Tf (z) = z +
1∑

1
ri−z

≈ z +
1∑

1
−z

= z +
1
−d/z = z

(
1− 1

d

)
.

(2.6)

Notice the similarity in the right-hand side of (2.4) with that of (2.6); geometrically a
d-tuple root and |z| � r’s look similar.

We would like to know what Newton’s method looks like, not only very near the root
or very far away, but also in between.
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Theorem 2.1: Let l be a line separating 0 from the roots, {ri}, of f . Then Tf (0) lies

on the side opposite from 0 of the line l′ = 1
d
l, i.e the line parallel to l and d times closer

to 0.

Figure 2 For theorem 2.1

Proof: (See figure 2). We recall that the map f : C→ C given by f(z) = 1
z maps circles

and lines to circles and lines (not respectively). If the roots, {ri}, lie in the half-plane H,
then { 1

ri
}’s lie in a ball, B, through 0. Then, since B is convex, the sum of the { 1

ri
}’s will

lie in the ball dB; and its reciprocal hence lies in the half-place 1
dH, whose boundary is 1

d l.

We will give another instance where the geometry of Newton’s method makes things
a bit simpler. Before we saw that for a root, r, of the polynomial f ,

|Tf (r)| = r, |T ′f (r)| < 1, (2.7)

and concluded that near r, Newton’s method converges to r; i.e. Bδ(r) ⊂ {basin of r} for
some δ > 0. We now want an estimate for δ.

Theorem 2.2: Let η = minri 6=r |ri − r|, and δ = η
2d . Then Bδ(r) ⊂ {basin of r}.

Furthermore, z ∈ Bδ(r) implies |Tf (z)− r| ≤ (1− ε)|z − r| for some ε > 0 depending only

on d.

Proof: An easy calculation— see appendix A.
By an invariant curve we mean a curve φ: R→ C such that

Tf (φ(t)) = φ(t+ 1) (2.8)

for all t ∈ R. Note that if φ(t) lies in the basin of r, for some root r, for t ∈ [0, 1], then
so would φ(t) for any t < 0 and any t > 0. We will prove that for each vertex, r, of 〈rj〉,
there will be an invariant curve from r to ∞ in the exterior wedge of r (and an open set
about the curve) which lies in the basin of r (see figure 3).
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Figure 3 Some parts of the basins

Lemma 2.3: If z lies on the bisector of the exterior angle at r, then Tf (z) lies in the

exterior wedge at r.

Proof: In appendix A.

Let r be a vertex of 〈rj〉, and let z be a point within Bδ(r), δ as in theorem 2.2, and
lying on the bisector of the exterior angle at r. Then Tf (z) lies in Bδ(r) and in the exterior
wedge at r. We construct an invariant curve φ: R→ C by defining φ(0) = z, φ(1) = Tf (z),
and

for 0 ≤ t ≤ 1 φ(t) ≡ (1− t)z + (t)Tf (z). (2.9)

Since Bδ(r) and the exterior wedge at r are convex, it follows that φ(t) ∈ Bδ(r) and lies
in the exterior wedge for all t ∈ [0, 1].

(The reader may notice that the definition in equation (2.9) is rather arbitrary— all
we need is that φ(t), for t ∈ [0, 1], lies in the exterior wedge and Bδ(r).)

One can use equation (2.8) to extend the curve φ to all of [0,∞], but the important
step is to extend φ backwards to −∞.

We can always extend the curve backwards for a short time (uniquely) as long as
T−1
f 6= ∞ (or 0). By Lucas’ theorem we have f , f ′, and f ′′ have all their roots in 〈rj〉.

Since

T ′f (z) =
f(z)f ′′(z)
(f ′(z))2

, (2.10)

it follows that we can extend φ backwards at least as long as φ remains outside 〈rj〉.
But on the other hand, when we extend φ backwards, we will never leave the exterior

wedge at r— if φ left the wedge it would do so at some initial time, T0. But it is easy to
see that any point on the boudary of the exterior wedge is mapped to a point outside the
exterior wedge (assuming the wedge is non-degenerate; see figure 4).

Hence we can extend φ backwards to all of R.

Remark: In the degenerate case of all roots lying on one line segment, φ is just the
continuation of the line segment.
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Figure 4

We want to prove that as t → −∞, φ(t) → ∞. For this we need the following
theorem—

Theorem 2.4: Let the angle at r be α. Then

|φ(t− n)− r|
|φ(t)− r| ≥

(
d

d− 1

)n{ sinα, if α > π/2

1, if α ≤ π/2

}
.

Figure 5

Proof: Let t be fixed and let z = φ(t − n). Let l and l′ be the lines depicted in figure
5, through z and parallel to the interior angle boundaries. By theorem (2.1), Tf (z) =
φ(t − n + 1) and z must lie on opposite sides of both lr(1 − 1

d
) and l′r(1 − 1

d
). Applying

T recursively it follows that φ(t) is contained in the diamond pictured above, bounded
between (1 − 1

d
)n times lr and l′r and the exterior angle at r. It remains to prove the

following—

Lemma 2.5: Let ABCD be a parallelogram. Let 6 C = α, and let E be any point in
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ABCD. Then

|AC| ≥ |EC|

 1 if α ≤ π

2
sinα if α >

π

2

 .

Proof: See appendix A.

Corollary 2.6: φ(t)→∞ as t→ −∞.

At this point let us stop for a few remarks—
1. To estimate Ad we only need a sequence of points which are successive backward

iterates of Tf and which are reasonably well-behaved. The invariant curves are a
technical conveniece which gives us a lot of such sequences.

2. At this point we start to see some of the picture. We claim that the invariant curve
is surrounded by an open region of points in the basin of r; more generally, Γf is an
open set. The reason is that if z lies in the basin of r, then Tnf (z) lies in the interior of
Bδ(r) for some n. Then T−nf ≡ (T−1

f )n, defined locally at z, gives us a neighborhood
about z which lies in the basin of r.

3. Estimating the Area of the Basin Near the Invariant Curves

For each invariant curve constructed in §2, there is an open set containing it and lying
in the basin of a root. We want to estimate the area of these open sets to get a lower bound
on the density of Γf . To do this, we will fix a vertex, r, of 〈rj〉 whoose interior angle is
≤ π(1− 2

d
). Such an r always exists since the average angle of an m-gon is π(1− 2

m
). Let

φ be the invariant curve described in §2 determined by having φ(0) being the point on the
bisector of the exterior angle satisfying |φ(0)− r| = δ/2. For a fixed r and φ we define for
z ∈ Image φ,

ρ(z) ≡ sup{ρ : Bρ(z) ⊂ ( basin r)}.

It is convenient to define

θ(z) ≡ ρ(z)
|z − r| . (3.1)

In this section we will prove—

Theorem 3.1:

θ(z) >
(

1
d

)cd2 log d

.

Corollary 3.2:

Af > π

(
1
2

(
1
d

)cd2 log d
)2/

|B2(0)| =
(

1
d

)c′d2 log d

.
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First we will give some intuition for why theorem 3.1 should be true. Far away, when
|z| � |r|, Tf (z) = z(1− 1

d
) + lower order terms. It follows that

|Tf (z)− r|
|z − r| ,

ρ(Tf (z))
ρ(z)

are both 1− 1
d

+O

(
1
|z|

)
,

so that
θ(Tf (z))
θ(z)

= 1 +O

(
1
|z|

)
.

Hence
θ(φ(t− n))
θ(φ(t))

=
θ(φ(t− n))

θ(φ(t− n+ 1))
· · · θ(φ(t− 1))

θ(φ(t))

= 1 +O(
1
|φ(t)| +

1
|φ(t− 1)| + · · ·)

= 1 +O(
1
|φ(t)|),

because the sequence |φ(t)|, |φ(t−1)|,... behaves roughly like a geometric series, according
to theorem 2.4.

So if z is far enough away from all the roots, there is little difference between θ(z) and
θ(T−nf (z)) for any positive integer n. There may be other ranges of z for which θ does not
change much. When we cannot prove that this is the case we will use

Lemma 3.3: There exist constants µ and c, independent of d, such that if s ≤ 0 and

θ(φ(s)) < µ/d then

θ(φ(s))
θ(φ(s+ 1))

≥ c

d6
. (3.2)

Proof: See appendix A.

It is in this lemma that we get the main contribution for the lower bound. It turns
out that we will apply the lemma 3.3 about d2 log d times to get a bound on θ, namely for
t ∈ [0, 1] and integer n we have

θ(φ(t− n)) =

[
θ(φ(t− n))

θ(φ(t− n+ 1))
· · ·
]
θ(φ(t))

≥
(
c

d6

)O(d2 log d)

The rest of the time θ will not change much.

Now we give more ranges of φ where the ratio of the θ’s doesn’t change much.
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Lemma 3.4: There exist µ and c independent of d such that the following is true. Let

m and M be positive integers with m < M . Assume that for each n ∈ [m,M ], n integer,

we have

|ri − r|
|φ(t− n)− r|


<

c

d2
for i = 1, . . . , k

>
d2

c
for i = k + 1, . . . , d


for some k ≥ 2. Then

|φ(t− n)− r|
|φ(t− n+ 1)− r| ≤ 1− 1

2d

for n ∈ [m,M ]. If, in addition, for m < n ≤M we have

θ(φ(t− n)) <
µ

d
,

then

θ(φ(t−M)) ≥ 1
2
θ(φ(t−m)).

Proof: See appendix A.

Lemma 3.5: For t ∈ [0, 1] we have

θ(φ(t)) ≥ 1.

Proof: Since φ(0) and φ(1) lie in Bδ/2(r), so does φ(t) for t ∈ [0, 1], and hence ρ(φ(t)) ≥
δ/2 so that θ(φ(t)) ≥ 1.

We are now ready for the lower bound

Theorem 3.6: For any s ≤ 1 we have θ(φ(s)) ≥ (1/d)cd
2 log d.

Proof: Let s ≤ 1. Let t ∈ [0, 1] and n be a positive integer such that s = t−n. By lemma
3.5 we have

θ(φ(t)) ≥ 1 ≥ µ

d
, (3.3)

if µ is sufficiently small. Let n0 be the largest integer ≤ n such that θ(φ(t− n0)) ≥ µ/d,
where µ is sufficiently small to make equation (3.3) and lemmas 3.3 and 3.4 hold. We write

θ(φ(t− n))

=
[

θ(φ(t− n))
θ(φ(t− n+ 1))

· · · θ(φ(t− n0 + 1))
θ(φ(t− n0))

]
θ(φ(t− n0)).

Let I denote the subset of positive integers m such that

c

d2
≤ |ri − r|
|φ(t−m)− r| ≤

d2

c
, for some i, (3.4)
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with c as in lemma 3.4, and let J denote the set of positive integers not in I. By theorem
2.4 we see that the size of I is at most cd2 log(d)— for each of d− 1 possible ri’s, each one
can satisfy (3.4) for at most cd log d values of m. Hence, using (3.2),

∏
m∈I,n0≤m<n

θ(φ(t−m+ 1))
θ(φ(t−m))

≥
(

1
d

)cd2 log d

.

If m ≥ n0 and m ∈ J , then φ(t −m) must lie outside of Bδ/2 (or else θ(φ(t −m)) ≥ 1),
and thus there are at least two roots ri with

|ri − r|
|φ(t−m)− r| ≤

c

d2
.

It follows that J ∩ [n0, n− 1] consists of a union of at most d− 1 sequences of consecutive
integers, each satisfying the conditions for lemma 3.4. Applying lemma 3.4 we have

∏
m∈J,n0≤m<n

θ(φ(t−m+ 1))
θ(φ(t−m))

≥
(

1
2

)d−1

.

Hence

θ(φ(t− n)) = ∏
m∈I,n0≤m<n

θ(φ(t−m+ 1))
θ(φ(t−m))

 ∏
m∈J,n0≤m<n

θ(φ(t−m+ 1))
θ(φ(t−m))

 θ(φ(t− n0))

≥
(

1
d

)cd2 log d

.

Appendix A. Some Calculations

Lemma 2.5: Let ABCD be a parallelogram. Let 6 C = α, and let E be any point in

ABCD. Then

|AC| ≥ |EC|

 1 if α ≤ π

2
sinα if α >

π

2

 .

Proof: Clearly we only need show the above for E = B or D, and by symmetry only for
E = B. Consider triangle ABC. Then 6 B = π − α and 6 A = β, 6 C = γ with α = β + γ.
Then, by law of sines,

|AC|
|BC| =

sinα
sinβ

.
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Since β satisfies 0 ≤ β ≤ α, we have

|AC|
|BC| ≥ min

β∈[0,α]

sinα
sinβ

=

 1 if α ≤ π

2
sinα if α >

π

2



Lemma A.1: Let r = r1 = · · · = rk, k ≥ 1, and let η = minri 6=r |ri − r|. Then

|Tf (z)− r| ≤ (1− ε)|z − r| if |z − r| ≤ η
2d for some ε depending only on d.

Proof: After a linear map (a translation, rotation, and dilation) we may assume z = 0
and r = −1/2. Assuming η

2d
≥ |z− r| = 1

2
, we have η > d. Thus the ri’s not equal to r lie

outside of Bd− 1
2
(0), and so ∣∣∣∣∑

ri 6=r

1
ri

∣∣∣∣ ≤ (d− 1)
1

d− 1
2

=
2d− 2
2d− 1

.

Furthermore, since 1/r = −2 we have that∑ 1
ri
∈ B 2d−2

2d−1
(−2k)

which lies in the interior of
{y : <(y) < −1},

since 1 ≤ k ≤ d and 2d−2
2d−1 < 1. Since the map y → 1/y maps {y : <(y) ≤ −1} to

B1/2(−1/2), we have{
y :

1
y
∈ B 2d−1

2d−d
(−2k) for some k = 1, . . . , d

}
⊂ B 1−ε

2
(−1/2)

for some ε > 0. Reversing the linear map sending z, r to 0,−1/2 yields the lemma.

Theorem 2.2: Let η = minri 6=r |ri − r|, and δ = η
2d . Then Bδ(r) ⊂ {basin of r}.

Furthermore, z ∈ Bδ(r) implies |Tf (z)− r| ≤ (1− ε)|z − r| for some ε > 0 depending only

on d.

Proof: By lemma A.1, z ∈ Bδ(r) implies |Tf (z)−r| ≤ (1−ε)|z−r|, as well as |Tnf (z)−r| ≤
(1− ε)n|z − r| and thus Tnf (z)→ r.

Lemma A.2: Let y1, ..., ym lie in the wedge W of angle α ≤ π with vertex 0. Then

|y2
1 + · · · y2

m|
|y1 + · · ·+ ym|2

≤ cos2(
α

2
).
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Proof: By a rotation we may assume that W = {z : | arg(z)| ≤ α/2}. Then we have

|y1 + · · ·+ ym|2 ≥ |<(y1 + · · ·+ ym)|2

≥ (|y1|+ · · ·+ |ym|)2 cos2(
α

2
)

≥ (|y1|2 + · · ·+ |ym|2) cos2(
α

2
)

.

Lemma A.3: Let l be the line through r and perpendicular to the bisector of the interior

angle at r with respect to the polygon 〈rj〉. Let Hr be the set (half-plane) of points lying

to side of l opposite from 〈rj〉. Then if z ∈ Hr we have

|T ′f (z)| ≤ 1 +
1

cos2(π+α
4 )

where α = 6 r.

Figure 6

Proof: (See figure 6) We have

T ′(z) = 1−

∑(
1

z−ri

)2

[∑(
1

z−ri

)]2 . (A.1)

We can assume that l is parallel to the imaginary axis.
If z lies above the bisector of 6 r, then the z − ri’s lie in the wedge W = {y : −π/2 ≤

arg(y) ≤ α/2}, a wedge of angle π
2 + α

2 (see figure 7). If z lies below the bisector of 6 r,
then similarly the z−ri’s lie in a wedge of angle π

2 + α
2 . It then follows that the 1/(z−ri)’s
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Figure 7

also lie in a wedge of angle π
2

+ α
2

. Combining equation (A.1) with lemma A.3 yields the
lemma.

Lemma A.4: Let W be a wedge of angle α < π and let w ∈W . Then

|w + w′| ≥ |w|
{

sinα if α ≥ π/2
1 if α < π/2

}

for any w′ ∈W .

Proof: We can assume w = 1. Let w′ ∈W and let w′ make an angle of β with the x-axis.
Then |β| ≤ α. If |β| ≤ π/2 then clearly |1 + w′| ≥ 1.

Figure 8

Otherwise, from figure 8 we can see that

|1 + w′| ≥ sin(π − β) = sinβ ≥ sinα.
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Lemma A.5: Let z lie in the exterior wedge at r, let α = 6 r, and let r′ 6= r be a root

of f with ∣∣∣∣r′ − rz − r

∣∣∣∣ ≤ ν.
Then ∣∣∣∣Tf (z)− r

z − r

∣∣∣∣ ≥ c

ν + 1

{
sinα if α ≥ π/2

1 if α < π/2

}
for some absolute constant c.

Proof: We can assume z = 0, r = 1. We have all the ri’s lie in the wedge determined by
the interior angle at r,

W = {w : θ1 ≤ arg(w − 1) ≤ θ2},

with θ2 − θ1 = α. Since z is in the exterior wedge we have

W ⊂W ′ = {w : θ1 ≤ arg(w) ≤ θ2}.

It follows that all the 1/ri’s lie in

W ′′ = {w : −θ2 ≤ arg(w) ≤ −θ1}.

Hence ∑ 1
ri

=
1
r

+
1
r′

+ · · · = 1 +
1
r′

+ w

where w ∈W ′′. Since |r′| ≤ ν + 1 we have by lemma A.4 that

∣∣∣∣ 1
r′

+ w

∣∣∣∣ ≥ 1
ν + 1

{
sinα if α ≥ π/2

1 if α < π/2

}
. (A.2)

Since
Tf (z) =

1∑
1
ri

=
1

1 + ( 1
r′ + w)

and since the quantity on the right hand side of equation (A.2) is always ≤ 1, it follows
that

|Tf (z)− 1| ≤ c

ν + 1

{
sinα if α ≥ π/2

1 if α < π/2

}
for some absolute constant c.

Corollary A.6: Let φ be the curve defined just before lemma 3.6. Then φ(t) ≥ cδ/d2

for t ≤ 1 for some absolute constant c.
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Proof: Since |φ(0)− r| = δ/2 we can apply lemma A.5 with ν = 4d and α ≤ π(1− 2
d) to

obtain |φ(1)−r| ≥ cδ/d2 for some absolute constant c. It then follows that |φ(t)−r| ≥ cδ/d2

for any t ∈ [0, 1], and therefore also for any t < 0 since |Tf (z)− r| ≤ |z − r| for z ∈ Bδ(r).

Lemma 3.3: There exist constants µ and c, independent of d, such that if s ≤ 0 and

θ(φ(s)) < µ/d then
θ(φ(s))

θ(φ(s+ 1))
≥ c

d6
.

Proof: Let z = φ(s). The mean-value theorem implies

ρ(Tf (z)) ≤ ρ(z) max
ζ∈Bρ(z)(z)

|T ′f (ζ)|.

For µ sufficiently small (independent of d) we have ζ ∈ Bρ(z)(z), ρ(z) ≤ µ
d |z − r|, and the

fact that z lies in the exterior wedge at r together imply ζ ∈ Hr and thus

max
ζ∈Bρ̄(z)

|T ′f (ζ)| ≤ 1 +
1

cos2(π+α
4 )
≤ cd2.

Since z = φ(s) with s ≤ 0 we have by lemma A.6 that |z − r| ≥ cδ/d2 and thus∣∣∣∣r′ − rz − r

∣∣∣∣ ≤ 2dδ
cδ/d2

= c′d3

for some root r′ 6= r. Hence by lemma A.5∣∣∣∣Tf (z)− r
z − r

∣∣∣∣ ≥ c

d4
.

Thus
θ(z)

θ(Tf (z))
≥ ρ(z)
ρ(Tf (z))

|Tf (z)− r|
|z − r| ≥ c

d6
.

Lemma A.7: Let z lie on the bisector of the exterior angle. Then Tf lies in the exterior

angle.

Proof: It suffices to prove it for z = 0, r = 1. The map y → 1/y maps the wedge
W = {z : | arg(z − 1)| ≤ α/2} to the lune (intersection of two circles) L with vertices at 0
and 1 and of angle α (see figure 9).

It follows that ∑ 1
ri
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Figure 9

lies in the wedge 1 + (d− 1)L, since one of the ri’s is 1. Since 1 + (d− 1)L is a subset of
W , its reciprocal, Tf (z), lies in L. Since L lies in the exterior wedge, we are done.

Lemma 3.4: There exist µ and c independent of d such that the following is true. Let

m and M be positive integers with m < M . Assume that for each n ∈ [m,M ], n integer,

we have

|ri − r|
|φ(t− n)− r|


<

c

d2
for i = 1, . . . , k

>
d2

c
for i = k + 1, . . . , d


and

θ(φ(t− n)) <
µ

d
.

Then

θ(φ(t−M)) ≥ 1
2
θ(φ(t−m)).

Proof: Let z be such that |r−ri||z−r| ≤ ε for i = 1, . . . , k and |r−ri||z−r| ≥ B for i = k + 1, . . . , d.
For i = 1, . . . , k we have∣∣∣∣ 1

ri − z
− 1
r − z

∣∣∣∣ =
∣∣∣∣ ri − r
(r − z)(ri − z)

∣∣∣∣ ≤ 1
|r − z|

ε

1− ε
since

|ri − z| ≥ |r − z| − |r − ri| ≥ |r − z|(1− ε).

For i = k + 1, . . . , d we have∣∣∣∣ 1
ri − z

∣∣∣∣ ≤ 1
|r − ri| − |r − z|

≤ 1
|r − z|

1
B − 1

.

Thus
d∑
i=1

1
ri − z

=
k

r − z +
d

|r − z|O(
1
B

+ ε) =
k

r − z [1 +O(
d

B
+ dε)]
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and so
Tf (z)− r
z − r =

z − r−z
k

[1 +O( d
B

+ dε)]− r
z − r = 1− 1

k
+O(

d

B
+ dε). (A.3)

For
y ∈ B|z−r|µ/d(z)

we have
|z − r|(1− µ

d
) ≤ |y − r| ≤ |z − r|(1 +

µ

d
).

Assuming, say, µ/d ≤ 1/2, we get for i = 1, . . . , k

1
ri − y

=
1

r − y (1 +O(ε)),

(
1

ri − y

)2

=
(

1
r − y

)2

(1 +O(ε)),

and for i = k + 1, . . . , d
1

ri − y
=

1
r − yO(1/B),

(
1

ri − y

)2

=
(

1
r − y

)2

O(1/B2).

Thus

T ′(y) = 1−

∑(
1

y−ri

)2

[∑(
1

y−ri

)]2

= 1−
k

(y−r)2 (1 +O( d
B2 + dε))

( k
y−r )2(1 +O( dB + dε))2

= 1− 1
k

+O

(
d

B
+ dε

)
.

Hence, assuming ρ(z) ≤ µ
d |z − r| we have

θ(z)
θ(Tf (z))

=
ρ(z)

ρ(Tf (z))
|Tf (z)− r|
|z − r|

≥ 1
maxy∈Bρ(z) |T ′f (y)|

|Tf (z)− r|
|z − r|

= 1 +O

(
d

B
+ dε

)
,

where the constant in O() is absolute.
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If d/B and dε are sufficiently small, say ≤ 1/2d, then from equation (A.3)

|Tf (z)− r|
|z − r| ≤ 1− 1

k
+

1
2d
≤ 1− 1

2d
.

So given m < M and k integers with

|ri − r|
|φ(t− n)− r|


<

c

d2
for i = 1, . . . , k

>
d2

c
for i = k + 1, . . . , d


for all n ∈ [m,M ] and for some c sufficiently small, we have

|φ(t−M)− r|+ |φ(t−M + 1)− r|+ · · ·+ |φ(t−m)− r|

≤ |φ(t−M)− r|
(

1 +
(

1− 1
2d

)
+
(

1− 1
2d

)2

+ · · ·
)

≤ |φ(t−M)− r|2d

and
1

|φ(t−m)− r| + · · ·+ 1
|φ(t−M)− r| ≤

1
|φ(t−m)− r|2d.

Letting s = maxi≤k |ri − r| and S = mini>k |ri − r| we have, assuming θ(φ(t− n)) ≤ µ/d

for n ∈ [n+ 1,M ],

θ(φ(t−M))
θ(φ(t−m))

=
θ(φ(t−M))

θ(φ(t−M + 1))
· · · θ(φ(t−m− 1))

θ(φ(t−m))

≥
M−1∏
i=m

1−O
(
|φ(t− i)− r|

S
d+ d

s

|φ(t− i)− r|

)

≥ 1− c1
M−1∑
i=m

|φ(t− i)− r|
S

d+ d
s

|φ(t− i)− r|

≥ 1− c12d
(
|φ(t−M)− r|

S
d+ d

s

|φ(t−m)− r|

)
≥ 1− c1

(
c

d2
2d2 +

c

d2
2d2

)
≥ 1− c1(2c+ 2c)

where c1 is an absolute constant. So for c sufficiently small and ≤ 1
8c1

the lemma is proven.
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