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Abstract

In this paper we describe several theorems that give lower bounds
on the second eigenvalue of any quotient of a given size of a fixed
graph, G. These theorems generalize Alon-Boppana type theorems,
where G is a regular (infinite) tree.

When G is a hypercube, our theorems give minimum distance up-
per bounds on linear binary codes of a given size and information
rate. Our bounds at best equal the current best bounds for codes,
and only apply to linear codes. However, it is of interest to note that
(1) one very simple Alon-Boppana argument yields non-trivial code
bound, and (2) our Alon-Boppana argument that equals a current
best bound for codes has some hope of improvement.

We also improve the bound in sharpest known Alon-Boppana the-
orem (i.e., when G is a regular tree).

1 Introduction

The goal of this paper is to draw a connection between the “Alon-Boppana”
bound, in the theory of expanders or graph eigenvalues, and asymptotic upper
bounds for the minimum distance of an error-correcting code of a given rate.
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Recall that the Alon-Boppana bound is a lower bound on the second
eigenvalue of finite d-regular graphs. In its basic form it says that the second
largest eigenvalue of a d-regular graph is greater than 2

√
d− 1 + o(1) as the

number of vertices goes to infinity.
The connection with upper bounds on the minimum distance of a binary

linear code is that the minimum distance of a binary linear code C can be
expressed as a certain decreasing function of the second largest eigenvalue of a
certain regular graph associated to C (this graph is generally called the coset
graph of C⊥; see Section 5). In other words any lower bound on the second
eigenvalue of this graph translates into an upper bound on the minimum
distance of the code. If we use the aforementioned Alon-Boppana directly
then we only obtain a very weak upper bound on the minimum distance of
the code.

However, when we know more about the geometry of the graph, such as
for instance lower bounds on the number of cycles of a given length, then
the Alon-Boppana lower bound can be strengthened considerably. We derive
several lower bounds by different techniques. The first one is derived through
lower bounds on the number of cycles of a given length, the second through
comparison with Dirichlet eigenvalues. There is however a common under-
lying idea, namely the notion of a covering graph (see Section 3). In both
cases, the relevant quantities (either the number of cycles or the Dirichlet
eigenvalues) are bounded by the corresponding quantities of a cover graph.
The crux of this approach is that the cover graph may have a simple struc-
ture (for instance, for the coset graph we may choose a Boolean hypercube),
which enables us to estimate these quantities directly.

The second technique, when applied to the graph associated to the coset
graph of a binary linear code, yields the first MRRW bound [MRRW77] in
coding theory, which is the best known upper bound on the minimum dis-
tance for low rate codes. This bound was originally obtained with the “lin-
ear programming” approach. While our approach has elements in common
with the classical “linear programming” approach, we believe our approach
is easier to use and suggests more geometrically visualizable questions on the
Boolean hypercube. This is because a simple “Alon-Boppana” argument eas-
ily gives an interesting coding bound (see Section 5), and we don’t know of an
analogous argument based on the linear programming approach. Also, in an
attempt to improve the “first MRRW bound” (of [MRRW77], as explained
in Section 2) there arises a geometric question about what is the correct ana-
logue for the hypercube of the classical Faber-Krahn inequality for domains
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in Rn (see, e.g., [Fab23, Kra25, Cha84, Fri93]); if this analogue is “asymptot-
ically different” (see Section 9), which is presently conceivable, then the first
MRRW bound will be improved. We must admit, however, that at present
we cannot improve but only duplicate the first MRRW bound with our meth-
ods; furthermore it is quite conceivable that any theorem obtained with our
methods could be translated into a proof based only on the linear program-
ming approach (it would be interesting to know if this were really true). But
we reiterate that even if our approach is, in a sense, subsumed by the linear
programming approach, the setting and geometric pictures suggested by our
method seems to be easier to work with. Moreover, we also show how to ob-
tain the linear programming bounds dealing only with the Hamming space
through our approach, by changing slightly one of our Alon-Boppana bounds
(see Section 9).

The consequences for the Alon-Boppana theorem in this paper is that we
improve the best Alon-Boppana bound (of Friedman and Kahale, see [Fri93])
by a factor that depends on the graph’s size. This is done by generalizing the
known Alon-Boppana bound techniques to give coding bounds, and realizing
that the first MRRW bound improves this bound, in a sense, by a factor
of two (somewhere). It is not hard to see where this factor of two can be
recovered (see Section 9).

2 A basic fact for obtaining Alon-Boppana

bounds

Let us first introduce some general notation concerning eigenvalues of (adja-
cency matrices of) graphs. Let G be a graph with |VG| = n and adjacency
matrix AG. Recall that AG is a n × n symmetric matrix, with entries auv
indexed by the vertices of the graph, and auv = 1 iff u and v are adjacent in
G, and auv = 0 otherwise. Since AG is symmetric, it can be diagonalised in
an orthonormal basis. Then we write

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)

for the eigenvalues of G’s adjacency matrix (written with their multiplicity).
We denote by e1, e2, . . . , en the corresponding (orthonormal) basis of eigen-
vectors. We write ρi = ρi(G) for the i-th largest value that occurs among
the |λi|; for example, the Perron-Frobenius theorem implies that ρ1 = λ1 and
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thus
ρ2 = ρ2(G) = max(λ2,−λn).

Estimating λ2 is of interest in studying expansion; however, some techniques
only estimate ρ2 (and higher ρi).

Rayleigh principle gives us the following characterization of λ2(G) (it is a
straightforward consequence of the fact that e1, e2, . . . , en is an orthornormal
basis)

λ2(G) = max
f⊥e1

(AGf, f)

(f, f)
(1)

If G is a regular graph, then e1 can be chosen to be 1√
n
~1, where ~1 is the

all ones vector, and therefore by applying the previous equation we obtain

Fact 2.1 If G is a regular graph, and f ∈ Rn is orthogonal to ~1 then

λ2(G) ≥ (AGf, f)

(f, f)
(2)

This inequality is the key to obtain lower bounds on λ2(G) : by choosing
f appropriately we can relate λ2(G) to other quantities of the graph. Notice
that we can also apply the Rayleigh principle to AlG (or even sometimes to a
well chosen polynomial applied to AG), this yields for f ⊥ ~1 and any positive
odd integer l:

λ2(G)l ≥ (AlGf, f)

(f, f)
(3)

and in general for any positive integer l :

ρ2(G)l ≥ (AlGf, f)

(f, f)
(4)

In what follows we are going to apply these simple facts to several different

choices of f . For all these choices we are going to control the term
(AlGf,f)

(f,f)

which appears on the righthand side through the notion of a cover graph.

3 Graphs and Covers

In this section we review the definition of graph covers. Until Section 10 we
assume all graphs are simple, i.e. have no multiple edges or self-loops; this
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simplifies the discussion and notation. In Section 10 we give the definitions
needed for general graphs; all theorems immediately carry over to general
graphs.

By a simple graph we mean a graph with no multiple edges or self-loops;
so we may think of a simple graph, G, as a pair (VG, EG) where EG is a
subset of the set of unordered pairs of VG. Until Section 10 we understand a
graph to mean a simple graph.

A morphism π : H → G of graphs is a map from VH to VG such that the
natural map from EH onto pairs in VG has its image in EG. π thus gives rise
to a map from EH to EG which we also denote by π, assuming no confusion
will arise.

A morphism π : H → G is called a covering map if for every edge e =
{u, v} of G and every u′ ∈ VH with π(u′) = u there is a unique v′ ∈ π−1(v)
such that {u′, v′} is an edge in EH . We also say that in this case H is a cover
of G.

Example 3.1 Let G be any finite graph. Then G has a universal cover,
π : T → G, in that for any covering map ν : K → G there is a covering map1

µ : T → K such that π = ν ◦ µ. T is a tree. If G is d-regular, i.e. each
row and column of AG sums to d, then T is a d-regular tree (and any two
d-regular trees are isomorphic).

Example 3.2 Let G be a connected Cayley graph on (F2)k of degree n, with
generators c1, . . . , cn. This is a graph where we connect any x ∈ (F2)k to x+ci
for i ∈ {1, 2, . . . , n}. Let Bn be the Boolean n-hypercube, i.e. the Cayley
graph on (F2)n with generators e1, . . . , en where ei is the i-th standard basis
vector, i.e., ei is 0 on each coordinate except the i-th, where it is 1. Consider
the map πlin : (F2)n → (F2)k which takes ei (as above) to ci and is extended
by linearity. Then πlin induces a covering map π : Bn → G.

4 Coding Theory

A code of length n is a subset C ⊂ (F2)n, where F2 = {0, 1} is the field with
two elements. C is linear if it is a subspace of the vector space (F2)n. We
endow (F2)n with the Hamming distance, i.e. for x, y ∈ (F2)n, d(x, y) is the

1This covering map, µ, is uniquely defined if one works with “base-pointed graphs,”
i.e. graphs with a distiguished vertex.
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number of coordinates on which x and y differ. The minimum distance of a
code, C, is

dmin(C) = min{d(x, y) | x, y ∈ C, x 6= y},
and its normalised minimum distance is

δ(C) = dmin(C)/n.

The information rate of a code is

R(C) =
log2 |C|

n
.

If C is a linear code then this is just (dimC)/n.
Let δmax be the function

δmax(R) = lim
n→∞

max{δ(C) | R(C) ≥ R, C ⊂ (F2)n}

and
Rmax(δ) = lim

n→∞
max{R(C) | δ(C) ≥ δ, C ⊂ (F2)n}.

We are interested in estimating these functions.
To estimate δmax is essentially the same as to estimate Rmax, but a bit of

care is required to make this precise.

Proposition 4.1 Let δmax(α) ≤ f(α) for a continuous, strictly decreasing
function, f , defined on an open interval. Then (f−1 is defined on the image
of f and) Rmax(δ) ≤ f−1(δ).

Proof This is an easy (but mildly annoying) technicality; see appendix B.

2

We now state some classical bounds.

Theorem 4.2 Rmax(δ) ≥ 1− h(δ), where

h(θ) = −θ log2 θ − (1− θ) log2(1− θ).

Proof See the asymptotic Gilbert-Varshamov bound in [vL99].

2
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The best upper bound on Rmax is given by the following

Theorem 4.3
Rmax(δ) ≤ min

u∈[0,1−2δ]
b(u, δ), (5)

where
b(u, δ) = 1 + g(u2)− g(u2 + 2δu+ 2δ)

with

g(x) = h

(
1

2
−
√

1− x
2

)
.

For δ ≥ 0.273 this bound is the same as

Rmax(δ) ≤ b(1− 2δ, δ) = h
(

1/2−
√
δ(1− δ)

)
. (6)

Proof See [MRRW77] (or [MS77] for the latter half of the theorem).

2

The inequality (5) is known as the “second MRRW” bound; (6) is known as
the “first MRRW” bound.

Corollary 4.4 For small α we have

1

2
−
(
1 + o(1)

)√ α

2 log2 e
≤ δmax(α) ≤ 1

2
−
(
1 + o(1)

)√ α

log2(1/α)
.

5 Codes and Eigenvalues

In this section we recall how a graph can be associated to a linear code in
such a way that the eigenvalues of the graph are in relationship with the
codeword weights.

Let C ⊂ (F2)n be a linear code with basis r1, . . . , rk. We form the gener-
ator matrix, M , over F2, whose rows are the ri’s; so M is an k × n matrix.
Its columns, c1, . . . , cn, can each be viewed as an element of (F2)k.

Let G be the Cayley graph on (F2)k with generators c1, . . . , cn
2. Appar-

ently G may depend on the choice of the basis r1, r2, . . . , rk. It turns out that

2We shall assume (until Section 10) that no ci’s vanish and the ci’s are all distinct; if
not, then G will have self-loops and/or multiple edges, and we technically need Section 10
before we can apply our theory.
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G only depends on C. This can be seen by bringing in the dual code C⊥ of
C, that is

C⊥ = {x ∈ (F2)n | x · c = 0 ∀c ∈ C}.
Consider the graph with vertices the cosets x + C⊥, and two cosets being
linked by an edge iff they are at Hamming distance 1. We claim that the
Cayley graph defined before and this new graph are isomorphic, the isomor-
phism being given by the map π : x + C⊥ → Mx. Indeed, let two cosets
x+C⊥ and y+C⊥ be linked by an edge. This means that there exists c ∈ C⊥
and i ∈ {1, . . . , n} such that x = y + c + ei (where ei is the i-th standard
basis vector of F2

n, i.e., ei is 0 on each coordinate except the i-th, where it
is 1), this implies that Mx = My + ci. On the other hand if Mx = My + ci
then necessarily x and y + ei differ only by an element of C⊥.

We say that this graph is the coset graph of C⊥ or of the code3, C. The
following is a well-known folk theorem (see [DS91] and the reference there):

Theorem 5.1 Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of the adjacency matrix
of the coset graph of C⊥ arranged in non-increasing order. Then λ1 = n and
λ2 = n − 2dmin(C). Moreover, the weights (i.e. distances to the zero code
word) appearing in C are just the (n− λi)/2 as i ranges from 1 to 2k.

6 A Simple Generalized Alon-Boppana The-

orem

In this section we give a very simple but rather weak generalized Alon-
Boppana theorem and discuss its implications. Let G be a d-regular graph.
We use the approach outlined in Section 2 to obtain a lower bound on λ2(G)
and ρ2(G) and we choose f = χu − χv where χ denotes the characteristic
function in (4). Notice that

(AlGχu, χu) = Nl(u), (AlGχv, χv) = Nl(v),

where Nl(v) denotes the number of walks of length l from v to itself. Moreover
if u and v are at distance greater than l ≥ 0, then

(AlGχu, χv) = (AlGχv, χu) = 0.
3This is the graph of cosets of the hypercube modulo C⊥, or of C⊥ cosets, but it is

the graph of cosets one uses when working with C. Since we do not work with a code, C,
and its dual, C⊥, simultaneously (in this paper), no confusion will occur in referring to
the graph as the coset graph of “the code.”
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Hence
(AlGf, f) = Nl(u) +Nl(v)

Let Nl = Nl(G) denote the minimum of Nl(v) ranging over all vertices v of
the graph. Of course, (f, f) = 2, and so

(AlGf, f)

(f, f)
≥ Nl(G).

By using (4) we now obtain

ρ(AG) ≥
(
Nl

)1/l
;

The right-hand-side term can be estimated through a cover H of G for which
the calculation of Nl(H) might be much simpler. Indeed the following is
clear.

Fact 6.1 If π : H → G is a cover, then any H cycle about a vertex, v, gives
rise to a unique G cycle about π(v). Hence for any positive integer l we have

Nl(G) ≥ Nl(H).

In other words we have proved the following.

Theorem 6.2 Let G be a d-regular graph that contains two vertices of dis-
tance > l and H be a cover of G. Then

ρ(AG) ≥
(
Nl(H)

)1/l
;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.

The last statement follows by using (3) instead of (4).
The above theorem is quite simple. Unfortunately, for some purposes,

such as coding theory, we are interested in λ2(AG) and the cover graph
H (which can be chosen to be a boolean hypercube) will be bipartite (i.e.
Nl(H) = 0 for l odd). So we prove the following variant of the above theorem.

Theorem 6.3 Let π : H → G be a covering map. Let e1, e2 be two edges of
distance > l (i.e. the distance from any of e1’s endpoints to any of e2’s is
greater than l). Then

ρ(AG) ≥
(
Nl(H) +Nl−1(H)

)1/l
;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.
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Proof Let ei = {ui, vi} and set

f = χu1 + χv1 − χu2 − χv2 .

We have that (Alχu1 , χv1) is at least Nl−1(H), since any walk of length l− 1
beginning and ending in u1 yields a walk from u1 to v1 with one additional
step. Similar reasoning to that in the previous theorem then yields:

(Alf, f) ≥ 4
(
Nl(H) +Nl−1(H)

)
,

and, of course, (f, f) = 4. Similar reasoning as before now yields this theo-
rem.

2

We state two corollaries of this simple theorem:

Corollary 6.4 Fix d. Then for any d-regular graph, G, on n vertices, we
have ρ(G) ≥ 2

√
d− 1− o(1) as n→∞.

This follows by taking H to be the universal cover of G (namely the
infinite d-regular tree) and by noticing that any d-regular graph on n vertices
has at least two vertices which are at distance blogd−1 nc. The revelant
computation can be found in [LPS88] for instance.

We get stronger bounds with regular graphs which admit a cover which
has more closed walks than the d-regular infinite tree, and this is exactly
what happens for the coset graph of a code of length n which admits the
boolean hypercube as a cover (see Example 3.2)

Corollary 6.5 Let C be a binary linear code of length n of rate ≤ R. The
normalised minimum distance of C, δ, satisfies δ ≤ f(R), where f is a
function that satisfies:

f(R) =
1

2
− C

(
1 + o(1)

)√ R

log2R

when R tends to 0, with C = 1/
√

4e.

The bound of [MRRW77] yields the same corollary but with C = 1. The
calculation which lead to this theorem are in Appendix A.
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7 Projecting out constants

In this section we introduce a technique that will strengthen essentially all of
our Alon-Boppana theorems, including the ones in the previous section and
the more refined theorems to come.

In the previous section we created functions, f , for which (Alf, f) could
be bounded; the idea was to concentrate f at a few vertices. Since it is
important that f be orthogonal to ~1, the all ones vector, we took f to have
as many positive values as negative values, taking the values of different sign
to be far apart (a distance > l). However, we may alternatively take f to be
all positive, provided that we then remove f ’s component in the direction of
~1. This is the same as taking f to be concentrated and positive, subtracting
the same (small) negative value at every other vertex.

The idea of choosing an arbitrary f and “projecting out the constant
component” will be used repeatedly in this paper. Here is this technique
applied to Theorem 6.2.

Theorem 7.1 Let π : H → G be a covering map. Let G be a d-regular graph,
and let l be a value such that

Nl(H) ≥ dl/|VG|.

Then

ρ(AG) ≥
(
Nl(H)− dl

|VG|

)1/l

;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.

Proof Fix any v ∈ VG and set f = χv. Then f̃ = f −~1/|VG| is orthogonal
to ~1. We have

(Alf̃ , f̃) = (Alf, f)− (Al~1/|VG|,~1/|VG|) ≥ Nl(H)− dl/|VG|,

and
(f̃ , f̃) = (f, f)− (~1/|VG|,~1/|VG|) ≤ 1.

The reasoning used at the end of Theorem 6.2 now applies here, and we
conclude the theorem.

2

We may also obtain the following variant of Theorem 6.3.
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Theorem 7.2 Let π : H → G be a covering map with G a d-regular graph,
and let l be a value such that

Nl(H) +Nl−1(H) ≥ 2dl/|VG|.

Then

ρ(AG) ≥
(
Nl(H) +Nl−1(H)− 2dl

|VG|

)1/l

;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.

Proof Fix any edge, e = {u, v}, and let f = χu +χv and f̃ = f − 2~1/|VG|.
As before, f̃ is orthogonal to ~1, and we have

(Alf̃ , f̃) = (Alf, f)− 4(Al~1/|VG|,~1/|VG|) ≥ 2Nl(H) + 2Nl−1(H)− 4dl/|VG|

and
(f̃ , f̃) ≤ 2.

We argue as before.

2

Using this theorem we improve Corollary 6.5 by a factor of 2, as follows;
see Appendix A for the proof.

Corollary 7.3 In Corollary 6.5, we may take C = 1/
√

2e.

8 Eigenfunction Pushing Techniques

Let us now apply (2) to functions of the form f̃ = f − c~1 (where c is chosen

such that f̃ is orthogonal to ~1) where f is a function supported on a subset
U of vertices of the graph (this means that f is equal to 0 outside of U). We
easily obtain the following.

Proposition 8.1 Let f be supported on a set, U . Let G be d-regular. Then

λ2(G) ≥ (AGf, f)

(f, f)
− d|U |
|VG|

.
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Proof Let f̃ = f − c~1 where c = (f,~1)/|VG|; then f̃ is orthogonal to ~1,
and so

λ2(G) ≥ (AGf̃ , f̃)

(f̃ , f̃)
. (7)

Since
(f,~1)2 = (f, χU)2 ≤ (f, f)(χU , χU) = (f, f)|U |,

we have

(AGf̃ , f̃) = (AGf, f)− dc2|VG| ≤ (AGf, f)− d(f, f)|U |/|VG|.

Combining this with the fact that (f̃ , f̃) ≤ (f, f) (since f̃ is a projection of f
onto the subspace orthogonal to ~1) and with the inequality (7), finishes the
proposition.

2

To optimize this inequality we have to find for a given subset of vertices
U the function f which maximizes the ratio (AGf,f)

(f,f)
. This maximum is known

as a Dirichlet eigenvalue. We define for a graph G and a subset of vertices
W ⊂ VG,

λ1,Dir(W ) = max
f∈C0(W )

(Af, f)

(f, f)
,

where we write C0(W ) for those functions supported in W . It is easy to
check that the maximum is attained for a non-negative function (this is a
simple consequence of the Perron-Froebenius theorem, see also [Fri93]). The
f achieving the above maximum is called the first Dirichlet eigenfunction of
A; this f is known to satisfy Af = λf for λ = λ1,Dir(W ) (see [Fri93]).

Then it makes sense to find the subset W of a given size which maximizes
this eigenvalue, this leads us to define for a > 0, FKG(a), the Faber-Krahn
maximum of size a as

FKG(a) = max
|W |≤a

λ1,Dir(W );

the W achieving this maximum is the Faber-Krahn maximizer of size a.
The nice thing about this quantity is that it has a lower bound in terms

of the Faber-Krahn maximum for the same size of a cover graph, that is

Theorem 8.2 Let H be a cover of G. Then

FKH(a) ≤ FKG(a).
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To prove this fact we need a lemma and a definition. For a covering map
π : H → G and f : VH → R, we define the push forward, π∗f , a function on
VG, whenever H is finite, via

(π∗f)(v) =
∑

π(w)=v

f(w).

Lemma 8.3 Let f ∈ C(VH) and let π : H → G be a covering map. Assume
H is finite. If f ≥ 0 everywhere, then also π∗f ≥ 0. If AHf ≥ λf everywhere,
for some real λ, then also AGπ∗f ≥ λπ∗f . If f is supported in W , then π∗f
is supported in π(W ).

Proof The first part (the non-negativity statement) is clear. The second
part follows from the fact that π is a local isomorphism. The third part is
also clear.

2

We are ready now to prove Theorem 8.2.
Proof of Theorem 8.2 Let FKH(a) = λ = λ1,Dir(W ) be the minimizing
eigenvalue with |W | = a, and let f be the corresponding eigenfunction.
Then π∗f satisfies AG(π∗f) ≥ λπ∗f and π∗f is non-negative and supported
on π(W ), so

λ1,Dir

(
π(W )

)
≥ (AGπ∗f, π∗f)

(π∗f, π∗f)
≥ (λπ∗f, π∗f)

(π∗f, π∗f)
≥ λ.

Furthermore π(W ) is a set of size ≤ a. Hence

FKG(a) ≥ λ = FKH(a).

2

Putting Proposition 8.1 and Theorem 8.2 together we obtain

Theorem 8.4 Let G be a d-regular graph, and H be a cover of G. Then

λ2(AG) ≥ FKH(a)− da

|VG|
.

For an application to coding theory we observe:
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Proposition 8.5 Let H be the n-dimensional hypercube. Then for α ∈ (0, 1)
fixed we have FKH(2αn) ≥ 2

√
γ(1− γ)n+ o(n), where α = H2(γ).

Proof We take a ball of size roughly 2αn. For the details see appendix C.

2

Notice that we could also give a simple bound of FKH(2αn) ≥ αn by
taking the characteristic function of a subcube of dimension αn.

A corollary is the first MRRW bound.

Corollary 8.6 For any δ ∈ (0, 1) we have

Rmax(δ) ≤ h
(

1/2−
√
δ(1− δ)

)
.

Proof Fix an α ∈ (0, 1) and a code C of information rate ≥ α and a
corresponding covering map π : H → G We apply Theorem 8.4 with a =
2αn/ logn. We conclude

λ2(AG) ≥ 2
√
γ(1− γ) + on(1)

where α = h(γ). Hence

δ ≤ 1/2−
√
γ(1− γ),

and so
γ ≤ 1/2−

√
δ(1− δ)

and the corollary follows.

2

Remark 8.7 Notice that a (sub)cube of dimension αn has largest adjacency
eigenvalue αn. This implies that FKH(2αn) ≥ αn. This gives the weak
corollary that αmax(δ) ≤ (1 − δ)/2, which agrees asymptotically with the
Plotkin and Griesmer bounds of coding theory (see [vL99]).

Remark 8.8 The approach which was used in this section borrows some
ideas from [Nil91, Fri93]. Assume that G has a cover graph H . If fH is a
non-negative “approximate eigenfunction” on H , we can try to form “ver-
sions” of it, fG, on a quotient, G, with similar properties. In this section we
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have formed our version on G by “summing over fibres” (this was the push
forward function defined above); this is a similar technique to that used by
Nilli (see [Nil91]), later refined by Friedman and Kahale (see [Fri93])4. Our
improvement on this technique was obtained by “projecting out the con-
stants,” meaning that we project out the ~1 component from fG rather than
setting up fG (or fH) with a matching non-positive component to make it
orthogonal to ~1 (as done by Nilli, Friedman, and Kahale).

9 A Stronger Alon-Boppana Bound

9.1 A Simple Improvement

In this subsection we give an example of a more general generalized Alon-
Boppana bound. Namely, the following theorem and corollary strengthen
Proposition 8.1.

Theorem 9.1 Let G be a d-regular graph and let p be any real-valued func-
tion defined on the eigenvalues of AG. Then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f,~1)2/|VG|,

The theorem follows immediately from the spectral decomposition on AG as
applied to f .

Corollary 9.2 If in addition to the hypothesis in the above theorem we have
f is supported in U , then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f, f)|U |/|VG|.

The special case p(x) = x was the bound used in the previous section.
When G has a cover which is distance regular, then there is a very natural
choice of polynomials in the corollary which enables to have some control on

4Actually, the previous technique (of Nilli, Friedman, and Kahale) takes radial functions
on G given by the radial function on H that gives the first Dirichlet eigenfunction of a
ball in H of a given radius. The technique used here “pushed down” the eigenfunction on
H to G by summing over the fibres, i.e. for each vertex, v ∈ VG we sum the eigenfunction
over π−1(v). This may be better suited in certain situations, e.g. when the graphs are not
regular.
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the term
(
p(AG)f, f

)
when f = χv for any vertex v of G. Indeed, let H be

a distance regular cover of G. Let D denote the diameter of H . Then there
are D + 1 polynomials P0, P1, P2, . . . , PD (see [BCN89]) such that Pi(AH)
is the adjacency matrix of the graph with the same vertices as H and two
vertices are joined by an edge iff they are at distance i in H . In such a
setting for any Q =

∑D
i=0 βiPi where the βi’s are nonnegative we have that(

Q(AG)χv, χv
)
≥
(
Q(AH)χv, χv

)
. Notice now that

(
Q(AH)χv, χv

)
= β0 and

therefore (
Q(AG)χv, χv

)
≥ β0. (8)

The coset graphs associated to a binary linear code of length n that we
consider in this article have a common cover which is distance regular namely
the boolean cube Bn. An application of the aforementioned remark leads to
the Delsarte linear programming bound in coding theory as explained in the
following subsection.

9.2 Connections with the Delsarte Approach

Let us first quickly review the linear programming approach for obtain-
ing upper bounds on the minimum distance of a code (see [MS77, vL99]
for more details). For a code C ∈ (F2)n, we consider the distance distri-
bution of the code, i.e. the Bi’s for i = 0, . . . , n, where Bi denotes the
average number of codewords of distance i to a fixed codeword, that is

Bi
def
= 1
|C| |{(x, y); x ∈ C, y ∈ C, d(x, y) = i}|. The linear programming bound

is based on the inequality

n∑
i=0

BiKk(i) ≥ 0

for k ∈ {0, 1, . . . , n}, where Kk is a Krawtchouk polynomial of degree k :

Kk(x)
def
=

k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
,

with
(
x
j

)def
= x(x−1)...(x−j+1)

j!
. This yields linear inequalities which should be sat-

isfied by the Bi’s. By maximizing the sum of the Bi’s (which is equal to
the size of the code) which satisfy these inequalities we obtain a linear pro-
gramming problem for which an upper bound can be found by duality. This
duality result can be written as (see [vL99] Theorem 5.3.5)
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Theorem 9.3 Let β(x) = 1 +
∑n

k=1 βkKk(x) be any polynomial with βk ≥ 0
(1 ≤ k ≤ n) such that β(j) ≤ 0 for j = d, d + 1, . . . , n then any code of
minimum distance ≥ d and length n has cardinality at most β(0).

Finding interesting choices for β turns out to be a nontrivial task, how-
ever the first MRRW bound can be obtained by a direct application of this
theorem by choosing β appropriately (see [vL99]).

We now claim that this theorem is a simple consequence of Corollary 9.2,

provided we restrict to linear codes. Indeed, if we let Pk
def
=Kk((n − x)/2),

then Pk(ABn) is nothing but the adjacency matrix of the graph with vertices
belonging to F2

n and two vertices being adjacent iff they are at Hamming
distance k. This follows immediately from classical results about the Ham-
ming association scheme (see for instance Chapter 21 in [MS77]). There-
fore by using the remark which follows Corollary 9.2 for any polynomial
Q(x) = 1 +

∑n
k=1 βkPk(x) = 1 +

∑n
k=1 βkKk((n− x)/2) with βk ≥ 0 we have

that for any vertex of the coset graph G of a binary linear code of length n :(
Q(AG)χv, χv

)
≥ 1. (9)

Notice now that by Theorem 5.1 Pk(λi) = Kk(j) for some integer j ∈
[dmin(C), n] for any eigenvalue of the adjacency matrix of G different from n.
Therefore Q(λi) = 1 +

∑n
k=1 βkKk(j). This implies that

(χv, χv) max{Q(λi)|2 ≤ i ≤ |VG|} ≤ 0 (10)

if Q has been chosen such that 1 +
∑n

k=1 βkKk(j) ≤ 0 for any integer
j ∈ [dmin(C), n] (since this implies that Q(λi) ≤ 0 for i ∈ {2, . . . , |VG|}).
We eventually obtain by using Corollary 9.2 with f = χv and by putting
inequalities (10) and (9) together that

0 ≥ 1− 1 +
∑n

k=1 βkPk(0)

|C|

since Q(n) = 1 +
∑n

k=1 βkPk(0) by Theorem 5.1 and |VG| = |C|. This proves
Theorem 9.3.

10 General Graph Theory

In this section we review some basic terminology and notions needed to
generalize covering theory to graphs with multiple edges and/or self-loops.
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10.1 Directed Graphs

By a directed graph we mean a pair of sets, G = (VG, EG), with an iden-
tification of EG as a multi-set of VG × VG. In other words, G comes with
an incidence map iG : EG → VG × VG. We write i, E, V for iG, EG, VG if no
confusion can result. If i(e) = (u, v) we say that e is of type (u, v) or that e
orginates in u and terminates in v or that e’s tail is u and e’s head is v; in any
case we will write e ∼ (u, v); if no multiple edges occur, i.e. if i is injective,
then we may unambiguously write e = (u, v).

A walk is an alternating sequence of vertices and edges such that when
. . . , v, e, . . . occurs in the sequence, e’s tail is v, and similarly with the order
of v, e reversed (with “head” replacing “tail”). The adjacency matrix, AG, of
a graph, G, is the square matrix indexed on VG whose u, v-th entry counts
how many edges have type u, v. For a positive integer, k, the u, v-th entry of
(AG)k counts how many directed walks there are from u to v of length k. All
this makes sense if VG or EG is infinite, although the entries of AG or (AG)k

may not be finite.
A morphism π : H → G of directed graphs is a collection of maps

πV : VH → VG and πE : EH → EG that commutes with the incidence re-
lations (i.e., iG ◦ πE = (πV × πV ) ◦ iH). We often drop the subscripts from
πV , πE if no confusion can result.

For a morphism of directed graphs, π : H → G, it is possible to give a
number of equivalent definitions for π to be a covering map; all definitions
amout to π being a local isomorphism in some sense. One definition is that
for every vertex, v ∈ VG, w ∈ π−1(v), and every edge e ∈ EG with tail v,
there is exactly one f ∈ π−1(e) whose tail is w, and similarly with “head”
replacing “tail.” Another possibility is to define the geometric realization of a
graph (as in [Fri93]); then a covering map is a covering map in the topological
sense.

10.2 Graphs

By an undirected graph or simply a graph we mean a directed graph, G, with
an involution5 ι on EG that reverses heads and tails; in other words, G’s edges
are paired, e ∼ (u, v) with an edge ι(e) ∼ (v, u), where e may be paired with

5For ι to be an involution means that ι ◦ ι is the identity.
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itself6 if u = v.
A morphism of graphs is one of the underlying directed graphs that com-

mutes with the ι’s. A covering maps, adjacency matrices, and walks in graphs
are just the same of the underlying directed graphs.

It is now simple to see that all the theorems of this paper could as well
have been stated for graphs that may have self-loops or multiple edges.

11 Concluding Remarks

One of the most exciting questions to us is to find the Faber-Krahn maximizer
and maximum of the hypercube. One can find examples7 of very small or
large balls that are not the Faber-Krahn minimizers.

Question 11.1 Given γ ∈ (0, 1/2) is

lim
n→∞

FKBn
(
2H2(γ)

)
/n = 2

√
γ(1− γ),

i.e. are balls asymptotically maximizers for the hypercube?

If the answer is no, then according to the method of Corollary 8.6, we have
an improvement to the first MRRW bound.

A Calculations for Coding Theory

In this section we derive some simple combinatorial bounds needed in our
discussion of coding theory bounds.

Throughout this section we write f(n) ≈ g(n) if
(
log f(n)

)
/
(
log g(n)

)
→

1 as n→∞ (for example, n ≈ 2n but n 6≈ n2).

6This gives rise to “half-loops,” which are edges paired with themselves, and “whole-
loops” in the languauge of [Fri93]. For example, a whole-loop contributes 2 to an entry
on the diagonal of the adjacency matrix, whereas a half-loop contributes 1.

7For example, in the 3-hypercube, the 2-dimensional subcube has eigenvalue 2, which is
greater than that of a ball of the same size, namely

√
3. Similarly for the 3-dimensional ball

in the 7-hypercube. Also the n/2−
√
n radius ball has eigenvalue n− 4 (since n/2−

√
n is

the first zero of the second Krawtchouk polynomial), and the (n−4) dimensional subcube
is smaller; so by monotonicity (see [Fri93]) the ball here can also be beaten.
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Lemma A.1 If ρ ∈ (0, 1/2] is fixed, and if any integer n > 0 we set r =
r(n) = bρnc, then

|Br| ≈
(
n

r

)
≈ 2nh(ρ),

where |Br| is the size of the ball of radius r in the n-hypercube, and where

h(θ) = −θ log2 θ − (1− θ) log2(1− θ).

Proof This is a very standard application of Stirling’s formula; see, for
example, [vL99].

2

Lemma A.2 Let α ∈ (0, 1) be fixed. For any integer n > 0 set k to be the
even integer equal either to bαnc or to bαnc+ 1. Then

Nk(Bn) ≈ 2h(β0)n−nnk(1− 2β0)k,

where β0 is the unique solution in (0, 1/2) to the following equation

(1− 2β0) log(β−1
0 − 1) = 2α. (11)

Proof Since ABn has eigenvalues n− 2i with multiplicity
(
n
i

)
, we have

Nk(Bn) =
1

2n

n∑
i=0

(
n

i

)
|n− 2i|k.

It follows that setting Bi =
(
n
i

)
(n− 2i)k, we see that

Nk(Bn)

n+ 1
≤ max

i=0,...,n/2

Bi

2n
≤ Nk(Bn).

To find the i maximizing Bi, we write

Bi+1

Bi
=

(
n− i
i+ 1

)(
n− 2(i + 1)

n− 2i

)k
=

(
n− i
i+ 1

)
ek loge

(
1−2/(n−2i)

)
.

Set β = βn = i0/n where i0 is the (an) i ≤ n/2 maximizing Bi. Since
Bi0+1 < Bi0 we have(

1− β
β

+O(n−1)

)
e
−2α
1−2β

+O(n−1) < 1.
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Hence
1− β
β

< e
2α

1−2β +O(n−1).

Similarly Bi0−1 < Bi0 , and the reverse inequality holds. Taking logarithms
we conclude that

log(β−1 − 1)(1− 2β) = 2α,

where β is the lim sup and lim inf of βn. But differentiation shows that

f(β) = log(β−1 − 1)(1− 2β)

has f ′(β) = −2 log(β−1−1)− (1−2β)/(β−β2) which is < 0 for β ∈ (0, 1/2).
It follows that there is a unique β0 ∈ (0, 1/2) that satisfies equation (11),
and this β0 is the limit of βn.

2

Corollary A.3 For α, n, k as above we have

Nk(Bn) ≈ nk
(
α+ ω(α)

e

)k/2
,

where ω(α) is a function of α with ω(α) = O(α3/2) as α→ 0.

Proof For β = 1/2− ε with ε small we have

log(β−1−1)(1−2β) = log

(
1/2 + ε

1/2− ε

)
2ε = 2ε log

(
1+4ε+O(ε2)

)
= 8ε2+O(ε3).

Hence for α small we have

2α = 8ε2 +O(ε3) or
√
α/4 = ε+O(ε2) = ε +O(α).

Differentiation shows that

h′(x) = log2(x−1 − 1), h′′(x) =
− log2 e

x− x2
.

So h′(1/2) = 0 and h′′(1/2) = −4 log2 e, and

h(1/2− ε) = 1− 2(log2 e)ε
2 +O(ε3).
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It follows that

2−n2nh(β)(n− 2β)k ≈ 2−n(2 log2 e)ε
2+O(nε3)nk(1− 2ε)k

≈ e−2n(α/4+O(α3/2))nαn
(
2
√
α/4 +O(α)

)αn
≈ e−αn/2eO(α3/2n

(
n
√
α
)αn(

1 +
(√

α
))αn

≈ nk(α/e)k/2
(

1 +O
(√

α
))k/2

,

and the proposition is finished.

2

Proof of Corollary 6.5: Let G be the coset graph of C⊥. Consider the
largest odd integer, k, for which

k+2∑
i=0

(
n

i

)
≥ 2αn. (12)

It follows that there are two points in G of distance ≥ k + 3, and hence two
edges of distance ≥ k + 1. By Theorem 6.3, we have

λ2(AG) ≥
(
Nk−1(Bn)

)1/k
.

But by equation (12) and Lemma A.1 we have

2nh(k/n)+O(1) ≈ 2αn,

and thus
k/n = h−1(α) + on(1)

(where on(1) denotes a function that tends to zero as n → ∞). Since
h−1(α) = α/ log2(1/α) +O(α) for α small, Corollary A.3 then implies that

λ2/n ≥
√

α

e log2(1/α)
+ ω(α) + on(1),

where ω(α) = O
(√

α
)
. Now we use the fact that the minimum distance is

(n− λ2)/2.

2
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Proof of Corollary 7.3: Let k be as in the previous proof, except that k
is the largest odd integer such that

Nk+1(Bn) ≥ nk/|VG|.

Then taking k-th roots and dividing by n yields that k = nγ + o(n) where√
γ/e + ω(γ) = 2−α/γ

where ω(γ) = O(γ) for γ small. Hence

γ =
2α

log2(1/α)
+O(α),

for α small. Now we follow as in the proceeding proof, except that here
γ = k/n is, to first order, twice what it was in the previous proof; this factor
of two changes the C from 1/

√
4e to 1/

√
2e here.

2

B A Calculus Proposition

In this section we prove Proposition 4.1.
Let f be defined at α0, and set δ0 = f(α0). It suffices to show that

αmax(δ0) ≤ α0.
For any ε > 0 near 0, fix an η > 0. If

αmax

(
f(α0 + ε) + η

)
> α0 + ε, (13)

then there are codes Ci of length ni → ∞ as i → ∞ such that δCi ≥
f(α0 + ε) + η and

lim
i→∞

αCi > α0 + ε.

By passing to a subsequence we can assume that αCi > α0 + ε for all i. But
then δmax exceeds f (by at least η) at the value α0 + ε, which is impossible.
So inequality (13) is impossible, meaning that

αmax

(
f(α0 + ε) + η

)
≤ α0 + ε.

Now let η = η(ε) = δ0−f(α0 + ε) and let ε→ 0. We conclude αmax(δ0) ≤ α0,
and we are done.
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C The First Eigenvalue of a Ball and Related

Calculations

In this appendix we prove Proposition 8.5.
Since the size of the ball of radius nγ in Bn is ≈ 2nh(γ), we need only show

that the ball of radius nγ has first eigenvalue at least

2n
√
γ(1− γ) + o(n).

Let 0 denote the origin in (F2)n, which is a vertex of Bn; the weight, |v|, of a
vertex, v, of Bn is its distance from 0, or the number of nonzero coordinates
it has. Consider those functions, f , on Bn that depend only on the weight of
the vertex. For such an f , let fnrm, the normalization of f , be the function
on [0..n] such that

fnrm(i) = f(v)

/√(
n

i

)
for any v with |v| = i.

Then it is easy (and completely standard) to see that

(AGf)nrm(i) =
√
i(n− i + 1) fnrm(i− 1) +

√
(i + 1)(n− i) fnrm(i+ 1),

for all i (the coefficient of the right-hand-side vanishes for fnrm at the values
−1 and n+1). So under normalization the operator AG becomes a symmetric

tridiagonal operator Ã whose i−1, i entry is
√
i(n− i+ 1). It follows that if

i ∈ [γn− ω(n), γn], where ω(n) is any function that is o(n), then the i− 1, i
entry is

n
√
γ(1− γ) + o(n).

Hence, by monotonicity (see, e.g., [Fri93]), the first Dirichlet eigenvalue of
the ball of radius nγ is at least that of the path of length ω(n) + 1 times

n
√
γ(1− γ) + o(n).

But this path’s eigenvalue is well-known to be 2 cos(π/ω(n)), giving us a
lower bound on the ball’s eigenvalue of

2n
√
γ(1− γ) + o(n),

provided that ω(n) grows faster than
√
n (e.g., we may take ω(n) = n3/4).

2
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