
APPLICATIONS FOR MATH 441

(DRAFT–MAY CONTAIN ERRORS)

(DON’T FORGET TO OCCASIONALLY HIT THE “REFRESH”

BUTTON ON YOUR BROWSER)

JOEL FRIEDMAN

Contents

1. Introduction 2
2. Terminology for LP (Linear Programming) and Related Optimization

Problems 2
2.1. LP Terminology 2
2.2. Linear Programming Without Linear Programming 3
2.3. Integer Programming (IP) 3
2.4. Other of Linear Programs 3
3. Basic LP (Linear Programming) Applications 4
3.1. Resource Allocation 4
3.2. Scheduling with Wait Times 4
3.3. Other Applications 5
3.4. Parametric LP’s 5
4. Non-linear (Piecewise Linear, Concave Down) Programming via LP 6
5. Integer Programming with Linear Programming 7
5.1. Example of a Relaxation 7
5.2. IP’s That Can Be Solved as Their LP Relaxations 7
5.3. Bipartite Weighted Matching 8
5.4. Total Unimodularity 8
6. Basic IP Applications 9
6.1. Bin Packing and Related Problems 9
6.2. Graph Colouring 10
6.3. Sudoku 10
6.4. Final Exam Scheduling 10
7. Objective Functions That are Non-Linear but Concave Up/Down 10
8. Exercises 10

Copyright: Copyright Joel Friedman 2018. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Date: Last revised Friday 5th October, 2018 at 13:24(get rid of time in final version).
Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

1. Introduction

This is a list of applications of linear (convex, quadratic, integer, etc.) program-
ming, some of which will be discussed in Math 441. Most of these applications
could be the basis of a Math 441 project.

In Section 2 we give some terminology for LP’s (linear programs) and IP’s (in-
teger programs).

In Section 3 we discuss: resource allocation problems (scarce resources and ex-
pensive resouces), scheduling with wait times, and list some other applications. We
give some examples of parametric linear programming.

In Sections 4 and 5 we discuss problems that are not LP’s, but that can be solved
as LP’s by relaxing some of the constraints of the problem. Section 4 involves a
piecewise-linear, concave-down objective function, and Section 5 involves an in-
teger program (specifically, a weighted bipartite matching problem). In general,
non-linear programming and integer programming cannot be solved using linear
programming.

2. Terminology for LP (Linear Programming) and Related
Optimization Problems

2.1. LP Terminology. An LP (linear program) in standard form asks to

(1) maximize cTx = c · x = c1x1 + · · ·+ cnxn

subject to

(2) Ax ≤ b and x ≥ 0,

where x ∈ Rn (i.e., a n× 1 real-valued column vector) of (decision) variables, and
A,b, c are fixed of respective dimensions m× n, m× 1, and n× 1.

More generally, an LP is to maximize or minimize a linear function of x subject
to linear constraints—equalities and inequalities—in x. Any LP can be written in
an equivalent standard form (i.e., as (1) and (2)), and this can be good for teaching
purposes but can be problematic in algorithms.

Any x satisfying (2) is called a feasible solution of the linear program, and any
feasible x maximizing the objective c · x is called an optimal solution. The feasible
region of the LP is the set of all feasible solutions; it is a convex subset of Rn.

The simplex method introduces new slack variables

(3) xslack = b−Axdec

where xdec are the original x decision variables. If b ≥ 0, then xdec = 0 is a feasible
solution and (3) is the initial (first) dictionary of the simplex method; if not, then
the simplex method uses two phases, where the first phase determines whether or
not there is a feasible solution (equivalently, a feasible dictionary). The textbooks
by Chvatal and Vanderbei teach the dictionary notation for the simplex method;
other textbooks use tableau notation.

An LP may be infeasible, meaning that there are no feasible solutions; a feasi-
ble LP may have an optimal solution; a feasible LP without an optimal solution
is unbounded, meaning that there are feasible solutions whose objective attains
arbitrarily large values.

The matrix A is often called the coefficient matrix; in certain applications A
satisfies some nice properties, such as (1) its entries, aij , may be all non-negative,

APPLICATIONS FOR MATH441 3

or (2) A may be totally unimodular (see below). Some of these special properties
have desirable consequences for the simplex method and/or the solution of the LP.

2.2. Linear Programming Without Linear Programming. There is a pow-
erful fact about linear programs that is a consequence of the simplex method; this
fact does not require you to run the simplex method, but to merely consider how
your LP is set up: if you have an LP (linear program) in standard form with 100
variables and 5 constraints, then any optimal solution obtained with the simplex
method will have at least 95 (decision) variables equal to zero. More generally, if
an LP in standard form has n variables and m constraints with n ≥ m, and if the
LP is feasible and bounded (which is typical in applications), then the LP has an
optimal solution with at least n −m decision variables equal to zero; furthermore
the simplex method always produces such a solution.

From this you can show that for a 100 × 5 matrix game, where Alice has 100
pure strategies and Betty has 5, then Alice has an optimal solution for the game
“Alice announces a mixed strategy” where Alice plays only 5 of her 100 possible
strategies. If someone tells you which 5 of these strategies Alice plays in optimality,
then it would be easy to solve the linear program.

Unfortunately, this means that if you have 5 constraints on a diet problem
involving 100 foods, then there is an optimal solution using only 5 foods (which is
not particularly realistic).

2.3. Integer Programming (IP). We use Z to denote the integers
{0,±1,±2, . . .}, and Zn to denote n-dimensional (column) vectors whose compo-
nents are integers.

An example of an integer program (IP) is an optimization problem of the form
(1) and (2) which also requires x ∈ Zn, i.e., that the components of x are integers.
More generally, an IP is any problem to maximize or minimize a linear function of
x ∈ Zn subject to linear constraints.

The feasible region of an IP is the set of x ∈ Zn satisfying the linear constraints.
Algorithms to solve IP’s typically take much more time than algorithms to solve

LP’s of the same size. In fact, solving an IP is NP-complete1, whereas there are
polynomial time algorithms2 to solve linear programming.

2.4. Other of Linear Programs. Many optimization problems involve non-linear
functions, and some require the decision variables x to have integer values. This
class of problems are known as mathematical programs or non-linear programs.
Sometimes one is allowed to add Boolean expressions.

It is often hopeless to solve such general problems without additional assumptions
on the objective function and constraints.

Some special cases where one can hope to solve relatively small problems (relative
to the size of LP problems) include convex programming and, in particular quadratic
programming. The Markowitz model, which we will cover in class, is a quadratic
program. In this article we will give some examples; in this class we will likely cover
an additional example—the Markowitz Model—which is a quadratic program.

1This is covered in CPSC 421 and MATH 523.
2Some algorithms used in practice, such as the simplex method, are not currently known to

run in polynomial time but appear to be fast.

4 JOEL FRIEDMAN

3. Basic LP (Linear Programming) Applications

In Math 340 you have seen a number of standard applications of linear program-
ming. We’ll briefly review these, and then introduce some applications that may
be new.

3.1. Resource Allocation. These problems are a basic type of LP application
(see Chapter 1 of either Chvatal’s or Vanderbei’s textbook).

Scarce (i.e., limited) resources: Example: building furniture: you have a
given amount of resources (e.g., wood, labour or time, other materials).
You can use these to build products (e.g., tables, chairs, plant boxes). Your
utility is the money you make from each product.

Expensive resources: Example: diet problems: you have dietary require-
ments (upper and lower bounds), and you want to minimize the cost.

3.2. Scheduling with Wait Times. You wish have 6 tasks to perform; these
tasks take very little time (e.g., preheating an oven as part of baking cookies), but
you have the following scheduling constraints:

(1) task 2 must be performed at least 30 minutes after task 1;
(2) task 3 must be done at least 26 minutes after task 1;
(3) and a number of similar constraints.

We organize all these constraints by saying that there is a function Wait(i, j),
defined for certain pairs (i, j) with 1 ≤ i < j ≤ 6, such that task j must be
performed at least Wait(i, j) minutes after task i; the function Wait(i, j) is listed
in the following table:

i j Wait(i, j)
1 2 30
1 3 26
2 4 18
2 5 40
3 4 26
3 5 45
4 6 13
5 6 11

What is the shortest amount of time it takes to complete all these tasks?
Let xi denotes the time that we permform task i; and let us introduce variables

x0, x7 that represent the first time we perform a task and the last time we perform
a task. Then the above constraints yield the LP:

Minimize x7 − x0 subject to

x0 ≤ x1, x0 ≤ x2, . . . , x0 ≤ x6,

x1 ≤ x7, x2 ≤ x7, . . . , x6 ≤ x7,

and, based on the above table:

x1 + 30 ≤ x2, x1 + 26 ≤ x3, x2 + 18 ≤ x4, . . . , x5 + 11 ≤ x6.

The dual of this LP is very interesting: it identifies the “critical path of action.”
(This will be illustrated in the homework.)

APPLICATIONS FOR MATH441 5

3.3. Other Applications.

Matrix Games: These are two-player, zero sum games, such as rock-scissors-
paper, two person poker, etc.

3.4. Parametric LP’s. Any LP can be made more interesting when some coeffi-
cient(s), constant(s), and/or matrix entries are parameters rather than fixed values.

Example 3.1. Consider the LP:

Maximize 3x1 + ax2 subject to

x1 + x2 ≤ 5

x1, x2 ≥ 0,

where a ∈ R is a parameter. If a ≤ 3, then x∗
1 = 5, x∗

2 = 0 is an optimal solution,
and the objective value is 15. If a ≥ 3, then x∗

1 = 0, x∗
2 = 5 is an optimal solution,

and the objective value is 5a. Hence the optimal objective value is the function of
a given by {

15 if a ≤ 3, and
5a if a ≥ 3.

Furthermore, something interesting happens (the optimal solution changes) near
a = 3.

Example 3.2. Consider the LP:

Maximize x1 + x2 subject to

x1 + bx2 ≤ 7

x1, x2 ≥ 0,

where b ∈ R is a parameter; for simplicity let’s assume that b ≥ 0. It is not hard
to see that:

(1) if b ≥ 1, then x∗
1 = 7, x∗

2 = 0 is an optimal solution, and the objective value
is 7;

(2) if 0 < b ≤ 1, then x∗
1 = 0, x∗

2 = 7/b is an optimal solution, and the objective
value is 7/b;

(3) if b = 0, then the LP is unbounded.

Hence the optimal objective value is 7 if b ≥ 1,
7/b if 0 < b ≤ 1,
unbounded if b = 0

Furthermore, something interesting happens (the optimal solution changes) near
b = 1.

These LP’s illustrate the fact that if a feasible and bounded LP has two decision
variables and one constraint, then there is an optimal solution where one decision
variable is zero.

6 JOEL FRIEDMAN

4. Non-linear (Piecewise Linear, Concave Down) Programming via LP

Certain very special types of non-linear programming can be handled with linear
programming. One example of this is an LP where the objective to be maximized
is a piecewise linear function that is concave down; this corresponds to resources
whose utility have a “diminishing return.”

Example 4.1. Say that you can decide to go to some number of “rock concerts”
and “trips to mountains,” where

(1) each rock concert has a utility of 1; let r denote the number of rock concerts
you attend;

(2) the first 10 mountain trips have a utility of 2, and each subsequent mountain
trip has a utility of 0.5; let f denote the number of mountain trips up to
10, and let s denote any number of trips past the first ten.

You have a linear objective function

z = r + 2f + (0.5)s

with linear constraints

f ≤ 10, r, f, s ≥ 0

plus you have a Boolean (i.e., logical) constraint

If s > 0, then f = 10;

the Boolean constraint is not allowed in an LP. Assume that each rock concert
requires a certain amount of money and time, and similarly for each travel to a
mountain; then constraints may look like

r + 3(f + s) ≤ 300, 2r + 5(f + s) ≤ 550.

It is crucial that the constrains involve functions of f + s, not individual functions
of f and s. In this case f and s are interchangeable in the constraints, but f is
more valuable to the objective. So the optimal solution of the linear program

Maximize r + 2f + (0.5)s subject to

f ≤ 10

r + 3(f + s) ≤ something,

2r + 5(f + s) ≤ something else

r, f, s ≥ 0

will automatically satisfy the Boolean constraint

If s > 0, then f = 10.

Example 4.2. A slight variant of the above situation behaves poorly and can’t
be handled with LP: consider the situation where the first 10 mountain trips have
utility 0.5 and any subsequent ones have utility 2. The linear program

Maximize r + (0.5)f + 2s subject to

f ≤ 10

r + 3(f + s) ≤ something,

2r + 5(f + s) ≤ something else

r, f, s ≥ 0

APPLICATIONS FOR MATH441 7

will always have f = 0 in the optimial solution, since s has a higher utility coefficient
than f , and the constraints allow us to “move” any amount of f into the variable
s (while maintaining feasibility). Hence the constraint

if s > 0, then f = 10

is not satisfied by the optimal solution. We will later see that this is indicative of a
fundamental difficulty with non-linear programming when the functions don’t have
good “concavity” (or “convexity”) properties.

5. Integer Programming with Linear Programming

Certain IP’s (integer programs) can be solved by solving the LP (linear program-
ming) relaxation, which is the IP where we allow the decision variables to be real
numbers.

5.1. Example of a Relaxation. It is easy to see that the “toy” integer program

Maximize z = 3x1 + x2 subject to

x1 + x2 ≤ 12.3

x1 ≤ 5.1

x1, x2 ≥ 0

x1, x2 ∈ Z

has the solution x∗
1 = 5, x∗

2 = 7 with objective value z∗ = 22.3 The LP relaxation
is when we allow x1, x2 ∈ R; it is easy to see that the optimal solution of the LP
relaxation is x∗

1 = 5.1, x∗
2 = 7.2, with objective value z∗ = 22.5; this objective value

is higher than if we restrict x1, x2 to be integers.

5.2. IP’s That Can Be Solved as Their LP Relaxations. If the LP relaxation
of an IP has integer values in some optimal solution then this LP optimal solution
is also an optimal solution to the IP.

For example, for the “toy” IP

Maximize 3x1 + x2 subject to

x1 + x2 ≤ 12

x1 ≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z,

it is easy to see that the LP relaxation has a (unique) optimal solution x∗
1 = 5, x∗

2 =
7. Since this solution x∗ attains the highest value of the objective 3x1 +x2 over all
feasible x ∈ R2, it also attains the highest value over all feasible x ∈ Z2.

It turns out that there are important families of IP’s such that if you run the
Simplex Method on their LP relaxations, the optimal solution produced by the
Simplex Method always has integer values.

3See Exercise ??.

8 JOEL FRIEDMAN

5.3. Bipartite Weighted Matching. Say that two people, A (Angelina) and B
(Brad), each must give a research presentation in one of three time slots (call these
slots 1,2,3). Let xA1 = 1 if A presents in slot 1, and 0 otherwise. Similarly define
xA2, xA3, xB1, xB2, xB3. Say that we want to maximize

U(x) = 3xA1 + 2xA2 + xA3 + xB1 + 3xB2 + 2xB3

subject to the constraints that each person speaks in at most one time slot:

xA1 + xA2 + xA3 ≤ 1

xB1 + xB2 + xB3 ≤ 1

and that each time slot is occupied by at most one person:

xA1 + xB1 ≤ 1

xA2 + xB2 ≤ 1

xA3 + xB3 ≤ 1

We want

xA1, xA2, xA3, xB1, xB2, xB3 ≥ 0

and (the IP constraint)

xA1, xA2, xA3, xB1, xB2, xB3 ∈ Z

(which implies that these variables are either 0 or 1). It turns out that if we relax
this IP, allowing the decision variables to be reals, the simplex method will always
return an integral value.

This property of the LP relaxation returning an integral solution (provided that
we use the Simplex Method) is true for any similar such weighted bipartite matching
problem.

Note that if we want to maximize the utility function

U(x) = xA1 + xA2 + xA3 + xB1 + xB2 + xB3

where all “weights” equal 1, then there are fractional optimal solutions such as

xA1 = xA2 = xA3 = xB1 = xB2 = xB3 = 1/3.

However, the simplex method will always produce an optimal solution where four
of the decision variables are 0 and two are 1. Other methods, such as interior point
methods, are not guaranteed to return an integral optimal solution.

A weighted bipartite matching problem can be viewed as a special case of a
class of problems called network flows (with integer data); these network flows also
have the property that the simplex method always produces integer-valued optimal
solutions.

5.4. Total Unimodularity. One reason (or proof) that bipartite matching (and
network flow problems with integer data) produce integer-valued optimal solutions
involves unimodularity. Here we explain the rough idea.

A square matrix with integer entires is unimodular if its determinant is either −1
or 1; it is known that the inverse of such a matrix has all its entries integers. Any
shape matrix is totally unimodular if each of its square submatrices has determinant
either −1, 0, 1. If A in (2) is totally unimodular and the coefficients of b are all
integers, then any optimal solution found by the simplex method is necessarily
integer-valued. Let us briefly explain why.

APPLICATIONS FOR MATH441 9

The formulas for the simplex method (useful in the revised simplex method) show
that the general form of a dictionary has the basic variables, xbasic given as

xbasic = B−1(b−Anbxnb),

where B, necessarily invertible, is the basic part of the combined coefficient matrix
(i.e., [I|A]), Anb the non-basic part, xnb are the non-basic variables, and b is the
vector of constants of the LP. By rearranging the order of the rows and columns
of B, we see that B is an identity matrix where the bottom right square replaced
with a submatrix of A; it follows that B has determinant ±1 (it can’t be 0 since B
is invertible), and hence B−1 has integer entries, and so if b is integer-valued then
the corresponding basic feasible solution in the above dictionary will have integer
values.

Once can prove that the matrix A involved in bipartite matching problems is
totally unimodular. Since the vector of constants b consists entirely of 1’s, it follows
that the simplex method run on these problems always returns an integer-valued
optimal solution. With more work one can prove that the simplex method always
returns an optimal solution that is a matching.

6. Basic IP Applications

6.1. Bin Packing and Related Problems. A lot of problems are forms of “bin
packing.” Here is an example of “packing into two bins.”

Example 6.1. You have a team of two people, and your project involves 6 tasks,
each of which has to be done by one person alone; the tasks will take either person
the following amount of time in hours: 5,4,2,6,8,9. You want the maximum number
of hours of each team member to be as small as possible. Your problem can be
stated as

Minimize t subject to

5x1 + 4x2 + 2x3 + 6x4 + 8x5 + 9x6 ≤ t

5(1− x1) + 4(1− x2) + 2(1− x3) + 6(1− x4) + 8(1− x5) + 9(1− x6) ≤ t

0 ≤ x1, . . . , x6 ≤ 1

x1, . . . , x6 ∈ Z,

where for each i = 1, . . . , 6, xi = 1 if the first person does task i, and xi = 0
otherwise.

One good heuristic algorithm for the above problem is to assign the tasks from
longest to shortest, giving the longest remaining task to the one with the smallest
bin sum: e.g., in the above problem, the tasks are of length 9,8,6,5,4,2, so you
assign 9 to person A, the 8 and 6 to person B, then 5 to person A, then 4 to either
person A or B (since they are tied before you assign this task), and then 2 to the
other person.

For most heuristic algorithms there are situations that foil them. In the above
algorithm, if the tasks are of length 25,15,10,10,10,10, then the above heuristic
assigns 25 to person A, 15 to person B, ultimately the tasks are divided 45,35; the
optimal packing is to assign one person the tasks 25 and 15, and the rest of the
tasks to the other person.

Bin packing is a big subject, and there are many good heuristics in practice.

10 JOEL FRIEDMAN

6.2. Graph Colouring. [See class notes, in the notebook starting September 12.]

6.3. Sudoku. Sudoku can be viewed as a graph colouring problem, but there is a
better way to set up the IP. Sudoku is a good example of a problem that can be set
up as an IP in two different ways, with one way being shorter/better than another.

[See class notes, in the notebook starting September 12, and homework #2.]

6.4. Final Exam Scheduling. [See sample Research Proposal, discussed in class
and posted on the course website.]

7. Objective Functions That are Non-Linear but Concave Up/Down

There is an area of optimization know as convex programming, with quadratic
(convex) programming as a special case. This was briefly discussed in class on
September 26, 2018 (see the notebook starting on that date).

The bottom line is that if f = f(x) is a function of n-variables that you want
to maximize over a convex region R, then if f is concave-down (i.e., −f is convex)
then any local maximum of f on R is a global maximum on R.

This will be discussed in more detail sometime in October, and is discussed in
the article on non-linear programming posted on the course website.

8. Exercises

In all these problems you must justify your answer unless the problem states
otherwise; you will not be given any credit for stating the correct answer without
a written justification that your answer is correct.

(1) Consider the LP (in standard form): maximize x1+x2, subject to x1+x2 ≤
3 and x1, x2 ≥ 0.
(a) Given an optimal solution where x1, x2 are both positive, and justify

your answer (i.e., explain why your solution is feasible and optimal).
(b) How many basic and non-basic variables does the initial dictionary (or

tableau) have?
(c) Will the simplex method ever return an optimal solution with both

x1, x2 positive?

(2) [THIS EXERCISE IS IN PROGRESS] Say that you allow yourself at most
12 hours of TV per day, which consists of
(a) x1 hours of “The Expanse” reruns,
(b) x2 hours of “The X-Files” reruns,
(c) x3 hours of “The Walking Dead” reruns,
(d) x4 hours of other documentary programs,
which gives you a utility of

U(x) = 10x1 + 9x2 + 5x3 + 2x4 .

This yields the following LP:

max 10x1 + 9x2 + 5x3 + 2x4 s.t. x1 + x2 + x3 + x4 ≤ 12, x1, . . . , x4 ≥ 0.

Answer the following questions:
(a) What is the optimal solution of the above linear program? Justify

your answer (you can appeal to the Simplex Method, but I don’t
recommend it).

APPLICATIONS FOR MATH441 11

(b) Say that you can watch at most 7 hours of The X-Files, and hence add
the constraint x2 ≤ 7. What is the optimal solution of the above LP
with this added constraint? Justify your answer.

(c) Say that you can watch at most 7 hours of The X-Files, and at most
3 of The Expanse. What is the optimal solution of the above LP with
this added constraint? Justify your answer.

(3) Consider the following “toy” LP, involving a real parameter A ∈ R:

maximize 10x1 + 9x2 + Ax3 + 2x4

subject to

x1 + x2 + x3 + x4 ≤ 12,

x1 ≤ 7,

x2 ≤ 3,

x4 ≤ 1,

x1, . . . , x4 ≥ 0

(there is no explicit upper bound on x3). Describe the optimal solutions as
A varies over R (this includes negative values of A). Justify your answer;
no credit is given for simply stating the answer without justification; you
may use the Simplex Method to justify your answer, but I don’t recommend
this.

(4) Consider the following variant of Exercise 2: x1, . . . , x4 are the same, but
your utility function involves a parameter B ∈ R and is given as

U(x) = 10x1 + 9x2 + 5x3 + 2x4 + B(12− x1 − x2 − x3 − x4),

which reflects an additional utility of B per each hour of TV that you don’t
watch. The constraints are

x1 + x2 + x3 + x4 ≤ 12,

x1 ≤ 7,

x2 ≤ 3,

x1, . . . , x4 ≥ 0 .

Describe the optimal solutions for all values of B ∈ R.
(5) [THIS EXERCISE IS IN PROGRESS] Your life consists of (1) work, and

(2) non-work; you are free to decide how many hours you work per day
(on average); say that you work x hours per day (on average), and—for
simplicity—that your non-work hours per day are 24− x.

The utility you get from the amount of dollars (Canadian dollars) per
day is the following function, f = f(d):
(a) you must earn at least $80 per day (on a daily average);
(b) each dollar (or fraction thereof) between 80 and 120 is worth 10 units

of utility per dollar;
(c) each dollar between between 120 and 160 is worth 7 units of utility;
(d) each dollar between between 160 and 320 is worth 5 units of utility;
(e) each dollar between between 320 and 640 is worth 3 units of utility;
(f) each dollar between between 640 and 3200 is worth 1 units of utility;
(g) each dollar after 3200 is worth 0.1 units of utility.

12 JOEL FRIEDMAN

For example, if you earn d = 200 dollars per day, your utility is

f(200) = (120− 80)× 10 + (160− 120)× 7 + (200− 160)× 5 .

Your LP (linear program) has two parameters, A,B, and your overall
utility is

U(x) = A(24− x) + f(Bx),

where A is a measure of utility per hour of non-work, B is how many dollars
you earn per hour (and therefore f(Bx) is f applied to Bx, the number of
dollars you earn per average day).

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,
Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf

	1. Introduction
	2. Terminology for LP (Linear Programming) and Related Optimization Problems
	2.1. LP Terminology
	2.2. Linear Programming Without Linear Programming
	2.3. Integer Programming (IP)
	2.4. Other of Linear Programs

	3. Basic LP (Linear Programming) Applications
	3.1. Resource Allocation
	3.2. Scheduling with Wait Times
	3.3. Other Applications
	3.4. Parametric LP's

	4. Non-linear (Piecewise Linear, Concave Down) Programming via LP
	5. Integer Programming with Linear Programming
	5.1. Example of a Relaxation
	5.2. IP's That Can Be Solved as Their LP Relaxations
	5.3. Bipartite Weighted Matching
	5.4. Total Unimodularity

	6. Basic IP Applications
	6.1. Bin Packing and Related Problems
	6.2. Graph Colouring
	6.3. Sudoku
	6.4. Final Exam Scheduling

	7. Objective Functions That are Non-Linear but Concave Up/Down
	8. Exercises

