
2018-10-30, 7:20 PMTravelling salesman problem - Wikipedia

Page 4 of 17https://en.wikipedia.org/wiki/Travelling_salesman_problem

importance, apart from evident transportation and logistics areas. A classic example is in printed circuit manufacturing: scheduling of a route of
the drill machine to drill holes in a PCB. In robotic machining or drilling applications, the "cities" are parts to machine or holes (of different sizes) to
drill, and the "cost of travel" includes time for retooling the robot (single machine job sequencing problem).[10]

The generalized travelling salesman problem, also known as the "travelling politician problem", deals with "states" that have (one or more) "cities"
and the salesman has to visit exactly one "city" from each "state". One application is encountered in ordering a solution to the cutting stock
problem in order to minimize knife changes. Another is concerned with drilling in semiconductor manufacturing, see e.g., U.S. Patent 7,054,798 (
https://www.google.com/patents/US7054798). Noon and Bean demonstrated that the generalized travelling salesman problem can be
transformed into a standard travelling salesman problem with the same number of cities, but a modified distance matrix.
The sequential ordering problem deals with the problem of visiting a set of cities where precedence relations between the cities exist.
A common interview question at Google is how to route data among data processing nodes; routes vary by time to transfer the data, but nodes
also differ by their computing power and storage, compounding the problem of where to send data.
The travelling purchaser problem deals with a purchaser who is charged with purchasing a set of products. He can purchase these products in
several cities, but at different prices and not all cities offer the same products. The objective is to find a route between a subset of the cities, which
minimizes total cost (travel cost + purchasing cost) and which enables the purchase of all required products.

TSP can be formulated as an integer linear program.[11][12][13] Label the cities with the numbers 1, …, n and define:

For i = 1, …, n, let be a dummy variable, and finally take to be the distance from city i to city j. Then TSP can be written as the following integer
linear programming problem:

The first set of equalities requires that each city be arrived at from exactly one other city, and the second set of equalities requires that from each city
there is a departure to exactly one other city. The last constraints enforce that there is only a single tour covering all cities, and not two or more
disjointed tours that only collectively cover all cities. To prove this, it is shown below (1) that every feasible solution contains only one closed sequence
of cities, and (2) that for every single tour covering all cities, there are values for the dummy variables that satisfy the constraints.

To prove that every feasible solution contains only one closed sequence of cities, it suffices to show that every subtour in a feasible solution passes
through city 1 (noting that the equalities ensure there can only be one such tour). For if we sum all the inequalities corresponding to for any
subtour of k steps not passing through city 1, we obtain:

which is a contradiction.

It now must be shown that for every single tour covering all cities, there are values for the dummy variables that satisfy the constraints.

Without loss of generality, define the tour as originating (and ending) at city 1. Choose if city i is visited in step t (i, t = 1, 2, ..., n). Then

Integer linear programming formulation

} ←
Good .

Wk have n cities

to visit

j we went to

visit eccl one

←
Ui are

meaningful
variables :

xij
91 u ;

= f the number of steps we take

to reach city i
①
Xij=o

(Assume ! city I start of tour)
the inequality
is redunadnatnd

"
 " ' 7 I:*:c:S::p n.

after you write it
.

Ui t I E Uj

←
If hi # n is better ; both

are ok

Software note ! all the I # j above

are clumsy to program .

In Guk obi
it is simpler to enforce Xii =

O
.

2018-10-30, 7:20 PMTravelling salesman problem - Wikipedia

Page 5 of 17https://en.wikipedia.org/wiki/Travelling_salesman_problem

since can be no greater than n and can be no less than 1; hence the constraints are satisfied whenever For , we have:

satisfying the constraint.

The traditional lines of attack for the NP-hard problems are the following:

Devising exact algorithms, which work reasonably fast only for small problem sizes.
Devising "suboptimal" or heuristic algorithms, i.e., algorithms that deliver either seemingly or probably good solutions, but which could not be
proved to be optimal.
Finding special cases for the problem ("subproblems") for which either better or exact heuristics are possible.

The most direct solution would be to try all permutations (ordered combinations) and see which one is cheapest (using brute force search). The
running time for this approach lies within a polynomial factor of , the factorial of the number of cities, so this solution becomes impractical even
for only 20 cities.

One of the earliest applications of dynamic programming is the Held–Karp algorithm that solves the problem in time .[14]

Improving these time bounds
seems to be difficult. For
example, it has not been
determined whether an exact
algorithm for TSP that runs in
time exists.[15]

Other approaches include:

Various branch-and-
bound algorithms, which
can be used to process
TSPs containing 40–60
cities.

Progressive improvement
algorithms which use
techniques reminiscent of
linear programming.
Works well for up to 200
cities.
Implementations of branch-and-bound and problem-specific cut generation (branch-and-cut[16]); this is the method of choice for solving large
instances. This approach holds the current record, solving an instance with 85,900 cities, see Applegate et al. (2006).

An exact solution for 15,112 German towns from TSPLIB was found in 2001 using the cutting-plane method proposed by George Dantzig, Ray
Fulkerson, and Selmer M. Johnson in 1954, based on linear programming. The computations were performed on a network of 110 processors located
at Rice University and Princeton University (see the Princeton external link). The total computation time was equivalent to 22.6 years on a single
500 MHz Alpha processor. In May 2004, the travelling salesman problem of visiting all 24,978 towns in Sweden was solved: a tour of length
approximately 72,500 kilometres was found and it was proven that no shorter tour exists.[17] In March 2005, the travelling salesman problem of
visiting all 33,810 points in a circuit board was solved using Concorde TSP Solver: a tour of length 66,048,945 units was found and it was proven that
no shorter tour exists. The computation took approximately 15.7 CPU-years (Cook et al. 2006). In April 2006 an instance with 85,900 points was
solved using Concorde TSP Solver, taking over 136 CPU-years, see Applegate et al. (2006).

Computing a solution

Exact algorithms

Solution to a symmetric TSP with 7 cities using brute force search. Note: Number of permutations: (7-1)!/2 = 360

