Notes Starting Nov 7

- Branch and bound

Nov 7, 2018

- Branch \& Bound (erg. drive UBC to SEU; bin
- Presentations:

$$
\left.\begin{array}{l}
\text { bin } \\
\text { packing }
\end{array}\right)
$$

Rest of November :
-Presentations - Branch and bound $\} t$

- Gurabi (a bit) - Other LP (IP's in projects ant applications

Branch \& bard:

$$
\begin{aligned}
& \text { Day 1: Nah } 14 \\
& \text { Da, } 2 \text { : Now } 16 \\
& \text { 3! } 19 \\
& \text { 4: } \quad 21 \\
& \text { 5: } 23 \\
& \text { 6: } 26 \\
& \text { 7: } 28 \\
& \text { 8:30 }
\end{aligned}
$$

(1) Find some feasible solution \Leftrightarrow You know the cast
(2) At as many nodes as passible, have same lower bound

$$
63
$$

Bir lecting:
2 bins,
Items sie $250,150,100,100,100,100,4,3,2) \ldots$

(1) Went to chocse a reascneble declsion tree...

Nov 9 :

- Branch and bound - very general idea.
- Integer Progroumming: special case of branch \& bound "branch and cut"

Breach \& bound: how do I get from UBC to SFU minimizing cost:

Bus?

walk?
Drive?

Secy there are too many solutions to check all of them at
Branch \& Band: (1) You decide how good a solution you want; maybe with 10% of apteral, 2%, etc.
(2) You shall have same feasible solution
(3) You have some way of bowling enough nodes of the tree

Example:
Soy you have IP:
Bin packing into 2 bins of equal size.
Problem: Given n items and their sizes
egg. $n=10$, size $150,150,100,100,100,3,2,1,1,1$
I want

$$
x_{i}=\left\{\begin{array}{cccccc}
1 & \text { if item } i & \text { goes into bin }{ }^{*} \text { I } \\
0 & \prime & . . & . . & . & . . \\
\text { bin } \# 2
\end{array}\right.
$$

Sizes $S_{1, \ldots,} S_{n}$ given, want

First bin $h_{0} 1 d_{s}$! $\quad s_{1} x_{1}+s_{2} x_{2}+\ldots+s_{n} x_{n} \leqslant w$ $2^{\text {nd }} " \quad \because \quad s\left(1-x_{1}\right)+s_{2}\left(1-x_{2}\right)+\ldots+s_{n}\left(1-x_{n}\right) \leqslant w$

Minimize ω.
Decision vars: $x_{1}, \ldots, x_{n}, w \quad G i v e n ~ n, s_{1, \ldots}, s_{n}$.
Another strategy: sort s_{1}, \ldots, s_{n}

So $150,150,100,100,100$

Bin 1: 150,10e,100 $\longleftarrow \operatorname{size} 350$

$$
\text { Bin } 2: 150,100 \quad \epsilon \operatorname{siz} 250
$$

$$
\begin{aligned}
& \text { Bin 1: } 150,150 \\
& B \sin 2: 100,100,100
\end{aligned}
$$

For IP $\overbrace{}^{\text {relcx }} L P$

$$
\vec{x} \in \mathbb{Z} \quad \vec{x} \in \mathbb{R}
$$

or

$$
x_{i}=0,1
$$

$$
0 \leq x_{i} \leq 1
$$

Solving the LP version (relaxation) is much faster to do

This gives a band on the IP

Example: $\min w$ sit.

$$
\begin{aligned}
& 150 x_{1}+150 x_{2}+100 x_{3}+100 x_{4}+98 x_{5} \leq \omega \\
& 150\left(1-x_{1}\right)+150\left(1-x_{2}\right)+100\left(1-x_{3}\right)+100\left(1-x_{2}\right)+100\left(1-x_{5}\right) \leq \omega
\end{aligned}
$$

sit.
x_{i} are $0,1 \longleftarrow 0 \leq x_{i} \leq 1$ and x_{i} integers
relax $\longrightarrow 0 \leqslant x_{i} \leqslant 1$ but x_{i} 's con be real could set $x_{i}=\frac{1}{2}$

Na 14: Branch \& Bound: Branch \& Cut $\max 4 x_{1}+5 x_{2}$
st.
How does
branch and cut work?

$$
x_{1, x_{2}} \in \mathbb{Z} \leftarrow I P
$$

$$
x_{1}, x_{2} \geq 0
$$

Nov 19:
What do branch and cut nodes mean?
(1) In genera, hard to tell... There can be good news.
(2) There are 2 specific cases that are easy to understand

- bin packing
- graph colouring

Bin Packing
Graph Coloring
Int Prog: Decision vars $x_{i j} \in 0,1$

Graph colouring
Node: 3 colours

$$
x_{i 1}+X_{i 2}+x_{i 3}=1
$$

for all

$$
x_{21}=0, x_{22}=1, x_{23}=0
$$

We
know:

