Starting Sept 26!

- Convex (but nonlinear) optimization
- Summary of Project Ideas
- Quadratic Programming: "PSD"
- TSP and Lazy Constraints (Modifying \{ $\left\{\begin{array}{l}\text { LP }\end{array}\right\}$)
- PROPOSAL GRADING (page 17)
- Friday, Oct 5: Getting a good better model (page 20)

Sept 26:
Most real world problems are not truly linear...
Genera' problem: max $f(\vec{x})$ sit. "non-linear program"

$$
\left\{\begin{array}{c}
\text { constrainsts } \\
\text { on } \vec{x}
\end{array}\right\} \text { "methematiocl program" }
$$

We need same conditions on f and $\left\{\begin{array}{c}\text { constraints } \\ \text { an } \\ \bar{x}\end{array}\right\}$ to get something that a computes can solve...

What makes LP work?
Think of calculus optimization:

(1) Find x sit. $f^{\prime}(x)=0$: candidates for local max
(2) If constrain x to be $a \leqslant x \leqslant b$, then
check $f(a), f(b)$
(i) If $f(x)$ is concave down, and you want max f :

A local maximum on \mathbb{R}_{ρ} interval is a global maximum
LP works an this idea.
CP = Convex programming: feasible region convex f is cencruve down

QP = Quadratic programming: $C P$ and f is quadratic function

Qucdretic programming:
$\max f(\vec{x})$ sit.

$$
\left.\begin{array}{c}
A \vec{x} \leq \vec{b} \\
\vec{x} \geq 0 \\
\vdots
\end{array}\right\} \begin{gathered}
\text { convex } \\
\text { set }
\end{gathered}
$$

in \mathbb{R}^{2}

Examples of quadratic $f(x)$ that are concave down (1) $f(\vec{x})$ is a utility with "diminishing returns"

$$
\begin{array}{ll}
x=0 & \text { utility } 0 \\
x=1 & \text {, } f(1) \\
x=2 & \text {, }<2 \cdot f(1)
\end{array}
$$

(2) Makkowitz model (discuss in a few weeks) V

$$
f(\vec{x})=\underbrace{\sum_{i=1}^{n} \alpha_{i} x_{i}}_{\text {return }}=\mu \underbrace{\sum_{i, j} x_{i} x_{j} \beta_{i j}}_{\substack{\text { variance } \\ \text { os portfolio }}}
$$

$$
x_{1}=\text { hold of stack } 1
$$

$$
x_{2}=\cdots \cdots \cdot 2
$$

Why is checking the endpoints bad?

- In 1-dim:

2 endpoints

$$
x=a, x=b
$$

$$
a \leq x \leq b
$$

- In 2-dim

4 "endpahts (corners) to check

8
endpoints/corners/vertices

- In 20-dim

$$
2^{20}=1,048,576 \text { vertices }
$$

Typical Challenges:
LP's: Gathering data on variables and constraints - What are interesting constraints

LP's with 100 decision vars arsisints have solutions with most decision variables $=0$

Sept 28:

- Blessing/Curse of the simplex method, really LP... Examples I
today \because for a lot
of models
- Ir a lot of projects, a quadratic objective fund is better (more realistic, gives better optimal solutions, etc.)
However, you often need quadratic to be concave down... [Gurobi will refuse to solve it otherwise, ...-]
- Many QP's are naturally concave down...
$=$
Homework H2: Some problems have many If formulations...

Blessing of simplex method: it produces optimal solutions with same guaranteed \# of zeros...

Eng. best linear cpproxinction:

Wont $y=a x+b$ that fits the data well.
Far each point $\left(x_{i}, y_{i}\right)$, error $i=\left|y_{i}-a x_{i}-b\right|$
(1) linear regression is: choose a, b sit. $\sum_{i=1}^{n}\left(\text { error }_{i}\right)^{2}$ is minimal.
(2) in some situations, want to minimize

$$
f(a, b)=\max _{i}\left(\text { error }_{i}\right)
$$

"best max error fat" "best L^{∞} fir " "best Chebyshev fit" $^{\prime}$ Thebe.-
(linear approximations: $y=a x+b$)
(similar properties for $y=a x^{2}+b x+c$

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=a x^{2}+b x+c+d e^{-x}
\end{aligned}
$$

Given $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ want a, b sit.
d $\max _{i=1, \ldots, n}\left|y_{i}-a x_{i}-b\right| \quad$ is as small as possible.

What o we expect?

$$
n=2
$$

can always do exactly

$=$
LP: min ω sit. $-\omega \leqslant y_{1}-a x_{1}-b \leqslant \omega$
Decision vars $a, b, \omega \quad-\omega \leqslant y_{2}-a x_{2}-b \leqslant \omega$
$\left(\begin{array}{ll}\text { Given } & x_{1}, \ldots, x_{n} \\ 1 & 1, \ldots,-1 / n\end{array}\right)$

$$
-w \leqslant y_{n}-a x_{n}-b \leqslant w
$$

$\omega=0$ means Defect fit usvell, we expect $w>0$
[we can assume best $a, b>0$]

First dictionary!
decision vars a, b, w
slack variables
Zn inequalities
$2 n$ slack vars $\left\{\begin{array}{l}u_{1}=w-\left(y_{1}-a x_{1}-b\right) \geqslant 0 \\ u_{2}=\left(y_{1}-a x_{1}-b\right)+w \geqslant 0 \\ \vdots\end{array}\right.$
In the initial dictionary

So

$$
\left.\begin{array}{l}
\text { ar } y_{i}-a x_{i}-b=w \\
-w=y_{i}-a x_{i}-b
\end{array}\right\} \begin{aligned}
& \text { three } \\
& \text { times }
\end{aligned}
$$

$\therefore\left\}^{9} \cdots, 1\right.$ "support" pant is an $\left(x_{i}, y_{i}\right)$
\quad for the best a, b,
$\left|y_{i}-a x_{i}-b\right|$ is largest
simplex method \Rightarrow if 3 decision vars, and they are all $>$ in opt, $\Rightarrow 3$ slack vars are 0 in optimality
Bad news: if you have many decision vars $\&$ few slack vars

Oct 1

- Please email me: jfemath.ubc.ca if you want to work in a group of ≤ 2 people
- Remarks on QP's and what Gurobi (and you) want to avoid
- TSP's: Lazy constraints, "modifying Lp"
- Modifying other LP's/LP's $\left\{\begin{array}{l}\text { curve fitting }\left(L^{\infty}, L^{\prime} \rightarrow L^{2}\right) \\ \text { airplane scheduling (max } \rightarrow \text { sum })\end{array}\right.$

Quadratic Programs:

$$
\begin{aligned}
& \text { Objective }(\vec{x})=\operatorname{Linecs}(\vec{x})+Q u e d r a c(\vec{x}) \\
& \vec{x}=\operatorname{decision~vars~} \\
& \operatorname{Linear}(\vec{x})=\vec{C} \cdot \vec{x}=\sum_{i=1}^{n} C_{i} x_{i} \quad\left(\vec{x} \in \mathbb{R}^{n}, \mathbb{Z}^{n}\right) \\
& \operatorname{Qucdratic}(\vec{x})=\sum_{i j=1}^{n} \alpha_{i j} x_{i} x_{j} \quad\left\{\begin{array}{l}
\text { concave -down or }
\end{array}\right.
\end{aligned}
$$

Goodnew: $Q(\vec{X})=\sum \alpha_{i j} X_{i} X_{j}$ is coneave-down iff $Q(\vec{x}) \leqslant 0$ all \vec{x}.

Example:
$\max U(\vec{x})=U\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+\ldots \begin{aligned} & \text { reward you } \\ & \text { for having }\end{aligned}$ some of x_{1}, some of x_{2}
$(\cdots$ example: $\quad x_{1}+x_{2}+\underbrace{(0.01) x_{1} x_{2}}_{x_{2}}$
look at $Z=x_{1} x_{2} \quad \underbrace{\text { neg }}_{\text {pos }} \int_{\text {neg }}^{\text {positive }} x_{1}$

What works

$$
\max U(\vec{x})=x_{1}+x_{2} \underbrace{-(0.1)\left(x_{1}-x_{2}\right)^{2}}_{\text {concave down }}-\left(x_{1}-3 x_{2}\right)^{2}
$$

$$
-(0.1)\left(x_{1}-x_{2}\right)^{2} \quad \text { penalized for }
$$ not same of each, not equal amounts of each

$$
=\operatorname{linew}\left(x_{1}, x_{2}\right)+\left(a x^{2}+b x y+c y^{2}\right)
$$

Standard tests: given $Q=Q\left(\frac{\lambda}{x}\right)$ quadratic, is it concave down? i.e. always ≤ 0 ?

Markowits model: $a_{j}=\operatorname{Lines}(\vec{x})-\mu \underbrace{\operatorname{Variance}(\vec{x})}$
In Markowits model, you are guaranteed that the quadratic term is always ≤ 0, hence concave down.

Next:
Travelling Salesman $\underset{\substack{\text { person }}}{\substack{\text { Problem }}}$
Idea: n cities '

Cost

$$
\begin{aligned}
C_{i j}= & \text { going from } \\
& \text { city } i \text { to } \\
& \text { city } j
\end{aligned}
$$

Start at city "I, want to visit all cities with the lowest cost

TSP used in a lot of problems...
Toy problem! lacing your shoes
-. 4 eyelets,

- left and right,
- : wart to run lace thru all eyelet

Usual formulation:

$$
x_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array} \quad \text { from city } i \rightarrow \text { city } j\right.
$$

What equalities or inequalities?
etc.

$$
\sum_{i, j=1, \ldots, n} x_{i j}=n
$$

For each i, $\quad \sum_{j=1}^{n} x_{i j}=1 \quad \begin{aligned} & \text { fran city } i, \text { go to } \\ & \\ & \text { exactly one city afterwards }\end{aligned}$
For each;

$$
\sum_{i=1}^{n} x_{i j}=1 \quad \text { city } j \text { comes right after } \quad \text { ane city } \quad .
$$

Objective:
minimize total cost: $\sum_{i, j=1}^{n} X_{i j} \underbrace{C_{i j}}_{i j}$
This alone:

Problem: You can get a set of loops, not just one...

Recall : Sudoku

2 ways of seriting IP, one is better than the other

How to prohibit 2 or mare loops

There's no connection between $\{1,2,3\}$ and $\{4,5,6,7\}$

$$
\begin{array}{ll}
\sum_{i=1,2,3} x_{i j} \geqslant 1 & \text { this is a standard way of } \\
j=4,5,6,7 & \text { solving TSP... }
\end{array}
$$

The problem: really
for every $S \subset\{(, \ldots, n\}$

$$
\sum x_{i j} \geq 1
$$

$i \in S, j \notin S$
\# of S roughly 2^{n}.
Typreally run "lazy constraint addition"
Keep running the IP, and prohibit any loops that comes up by adding one of

Rem! Gurobi has this strategy on its website

Get 3!
Proposals due Oct S (Friday), meaning

- 11:59 pm on Monday, Oct 8 (=Thanksgiving) on Cancers
- You can choose your own group under Projects, submit
- 300-700 words, excluding math symbols and formulas (for the Preparal part,
- Should have not the outline)

$$
\geq 1 \text { parametric }
$$

* 1-2 sentence overview
* 3 or more questions to investracate $-\geqslant 1$ difficult
* At least ane precise LP/Ip/QP/etc.
* List of who is doing what
* Should be concise, well-arganized, and clear (One point each)
- Car be resubmitted once, within a week of being returned, for a higher score

Oct 3: Last appointments this week: Th 2-3, fri $9: 30-11: 30$, Canvas Sign

- Gurobi examples of good/bad QP
- More TSP
- $\left\{\begin{array}{l}\text { Synthetic Data (for TSP or Flight Schedules or Cities in Carrack or) } \\ \text { Toy examples }\end{array}\right.$
- Next topics: GOCV, "MEANINGLESS" objective functions
- TSP - Many competing formulations
- Triangle inequality in realistic models
- Two extreme toy examples
$\operatorname{dist}(P, R) \leqslant$
- Synthetic Data
$\operatorname{dist}(P, Q)+\operatorname{dis}(Q, R)$

TSP:

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=1 \\
& \sum_{i=1}^{n} x_{i j}=1
\end{aligned}
$$

Added
(1) $S \subset\{1, \ldots, n\}, n$ cities

(2) For any $S \subset\{1, \ldots, n\}$ dent want

$$
\sum_{i, j \in S} x_{i j} \leqslant \underbrace{|S|}_{\text {size of } S}-1 \quad \text { (if } S \neq\{1, \ldots, n\})
$$

(3) etc.
(4)
(5)

Friday Get 5:

- How to make a better model: Small adjustments Based an student projects
(1) Optimal revenue: one variable ms many variables
(2) Resource Allocation LP example [diet problem]: find a better parameter

Example of minor adjustment:
decide an price

Coffee Reverie

Coffee

$$
a \leq p_{1} \leq b
$$

Selling coffee $\longrightarrow P_{1}$
Selling donuts $\rightarrow p_{2}$
$P_{1}=a$ means: cost te $\left\{\begin{array}{l}\text { cafe } \\ \text { danu shop }\end{array}\right.$ is a
$\rho_{1}=b$ means: no one buys if price $>b$
make over cost

Simplest approximation (reasonable): Coffee $\operatorname{Rev}=C\left(p_{1}-a\right)(\underbrace{\left(b-p_{1}\right.}_{\text {demand at } p_{1}})$

Selling Donuts at $p_{2}=C_{0}+C_{1} p_{1}+C_{2} p_{1}^{2}$
Revenue Donuts $=C_{2}=-C<0$
Revenue Donuts $=\longrightarrow=D_{0}+D_{1} p_{2}+D_{2} p_{2}^{2}$
Total $\operatorname{Rev}\left(p_{1}, p_{2}\right)=\left(C_{0}+D_{0}\right)+\left(C_{1} p_{1}+D_{1} p_{2}\right)+\underbrace{\text { Quedratis }}$
Solution is not so interesting ((\because) Concave $\begin{array}{r}C_{2} p_{1}^{2}+D_{2} p_{2}^{2} \\ \text { Down }\end{array}$
(ii) Small adjustment:
miner adjustment
Re Coffee: $C\left(p_{1}-a\right)\left(b-p_{1}+0,1\left(n_{\left.\left.0,99-p_{2}\right)\right)}\right.\right.$

$$
\longleftrightarrow \text { get }^{12}-\binom{\text { small }}{\text { cant }} p_{1} p_{2} \text { term }
$$

(\cdots)
Quadratic

$$
-p_{1}^{2}-3 p_{2}^{2}
$$

to

$$
-p_{1}^{2}-3 p_{2}^{2}+
$$

if small enough, the quadratic is still concave-down

Coffee, Donuts Car repel or attract

Diet problem: min cost: $c_{1} x_{1}+c_{2} x_{2}{ }^{r} \ldots+c_{100} x_{100}$
Decision Vars: $\quad X_{1}, \ldots, X_{\text {loo }} \leftarrow$ foods
Constraints:

$$
\begin{aligned}
& 3,4 \\
& \text { constraints, }
\end{aligned}\left\{\begin{array}{l}
\min \text { protein } \leqslant p_{1} x_{1}+\ldots+p_{100} x_{100} \leqslant \max \text { protein } \\
\min \text { carlo } \leqslant s_{1} x_{1}+\ldots+s_{10} x_{100} \leqslant \max \text { carbs } \\
\vdots
\end{array}\right.
$$

bounded above \& below
(\because) Yields diets with very few types of foods consumed.
(in) Could bound each food $x_{1} \leq m_{1}, \quad x_{2} \leq m_{2}, \ldots$
(and Have m_{1}, \ldots, m_{100} ar p_{1}, \ldots, p_{100} or s_{1}, \ldots, s_{100} be parameters

Li with α, β parameters

