MATH 441
Notes Starting Sept 12

Sept 12: Most material next 2 weeks: article applications. pdf of whelassite
Plan: Give some standard LP and If (integer programming) applications.

- Later well divide the room by LP, IP, etc. applications to help people find groups.
- No class on Wednesday, Sept. 19.

LP apps: Resource Allocation - Scarce resources

- Expensive resources

Tasks with Wait Times
mention others: Matrix games
Surprise LP apps:
$\square^{6}{ }^{\lambda} \rightarrow$ - Some piecewire-lineor programs \longleftarrow (mathematical program)

- Weighted bipartite matching \longleftarrow (IP)

IP apps:

- Bin packing

Bounded resources
Scarce resource example:
Objective

Table: 3 units of wood, 1 hours of labour Chair: 1 unit of wood, 2 hours of labour You have 100 units wood, 120 hours of bour

Quest: Write LP; is it feasible and bounded; what else can we say?

$$
x_{T}, x_{c}=\# \text { if tables, chaws }
$$

$\max z=5 x_{T}+3 x_{c}$

Here $\vec{x}=\left[\begin{array}{l}x_{T} \\ x_{c}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ feasible.
In these problems: $\max \vec{C} \cdot \vec{x}$
Typically feasible
In these problems: max \vec{c}

$$
\text { sit. } \begin{aligned}
A \vec{x} & \leq \vec{b} \\
\vec{x} & \geq \overrightarrow{0}
\end{aligned}
$$

where entries of A and components of \vec{C}, \vec{l} are non-negative. and banded for simple reasons...

- Dual problem \& original LP have" economic interpretation"

Expensive resources:
Apples: " 0.2 each, Milk: "0.70 each litre.

Require: $\quad x_{1}+x_{2} \geqslant 10$ (Garb)

$$
x_{1}+8 x_{2} \geqslant 30 \text { (protein) }
$$

Quest: Write LP; is it feasible and bounded; what else can we say?

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { minimize }(.2) x_{1}+(.7) x_{2} \\
\text { maximize }-(.2) x_{1}-(.7) x_{2}
\end{array}\right. \\
10 \leqslant x_{1}+x_{2} \quad \text { (standard form) }-x_{1}-x_{2} \leq-10 \\
30 \leqslant x_{1}+8 x_{2} \quad \text { " } \quad \text { " } \quad-x_{1}-8 x_{2} \leq-30 \\
x_{1}, x_{2} \geq 0 \quad\left(\text { maybe } x_{1}, x_{2} \in \mathbb{T} \text {, maybe not, maybe } \mathbb{R}\right)
\end{array}\right.
$$

This $L P$ is feasible: take x_{1}, x_{2} very large
L P is banded: min has to be $\geqslant 0 \ldots$
But $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ not feasible..
$\max \vec{C} \cdot \vec{x}$ here A's entries and
sit. $A \vec{x} \leqslant \vec{b}$ all of \vec{b}, \vec{c} camporments

$$
\vec{x} \geq 0
$$ are negative..

- Dual LP:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{c} \rightarrow-\vec{b} \\
& \vec{b} \rightarrow-\vec{c} \\
& A \rightarrow-A^{\top}
\end{aligned}
$$

These diagrams
4 shouldn't have cycles
Tasks with Wait Times

$$
\begin{aligned}
& \text { Tasks with Wait Times } \\
& \text { Task o } \xlongequal[\leftrightarrows]{\leftrightarrows} \geq 20 \mathrm{~min} T_{\text {ask }} 20
\end{aligned}
$$

* Tasks take little time to perform, but
- Task 2 must be done at least 20 min after Task 1
- Task 3 at least 10 min after Task 1 - etc.
x_{i} time we do task: min $x_{6}-x_{0}$ sit.

$$
\left\{\begin{array}{l}
x_{0} \leq x_{1}, x_{6} \leq x_{2}, \ldots \\
x_{6} \geq x_{5}, x_{4}, x_{3}, \ldots \\
x_{1}+20 \leq x_{2} \\
x_{1}+10 \leq x_{3} \\
\vdots \\
x_{2}+25 \leq x_{5} \\
x_{3}+45 \leq x_{5}
\end{array}\right.
$$

Rem: "Path" implies need
Task I at least $10+45$ minutes "critical path"
"Critical

$$
\geq 10 \text { min Task 3 Task 5 picked out by dual LP }
$$

- Homework due "Sept 21" really Sept 23, 11:59pm
- New webpage on Furdementals Unix \& Gurobi

Parametric $L P$

$$
\begin{gathered}
\max z=10 x_{1}+9 x_{2}+A x_{3} \text { sit. } \quad\binom{A \in \mathbb{R} \text { is a }}{\text { parameter }} \\
x_{1}+x_{2}+x_{3} \leq 12 . \text { (all } x_{i} \text { is interchangeable) } \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Two cases:
$A>10: O_{p t} S_{d} x_{3}^{*}=12, x_{2}^{*}=x_{1}^{*}=0$ unique
(Optimum) Objective $10 \cdot 0+9 \cdot 0+A \cdot 12=12 \mathrm{~A}$

$$
\begin{aligned}
& A<10: \text { Opt Sol } x_{1}^{*}=12, x_{2}^{*}=x_{3}^{*}, 0 \\
& \text { (Optimum) Objective }=10 \cdot 12+9 \cdot 0+A \cdot 0=120
\end{aligned}
$$

$$
A=10, \quad x^{*} ? ?\left(\begin{array}{c}
12 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
12
\end{array}\right],\left[\begin{array}{l}
9 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
t \\
0 \\
12-t
\end{array}\right] 0 \leq t \leq 12
$$

SIMPLEX METHODS
RETURNS

Sept 17:

- No class on Wednesday (Sept 19)
- Unix, DOS (Windows), Gurobi basics! new webpage
- Math 441 published as of today on canvas.ubc.ca
- Homework \#1 due on Sunday, $11: 59$ pm
- Try submitting something to test the system before Sunday
- Submit one PDF file for the entire homework

Bin Packing (IP) Integer Programming $\because 1970$'s A project has 5 tasks taking $20,13,12,7$, and 3 hours. Each task has to be done by one person. What is the longest amount of time that a person must work if you project has 3 people?
$\min \omega$ subject $20 x_{1}+13 x_{2}+12 x_{3}+7 x_{4}+3 x_{5} \leqslant \omega$ $(\max -w)$

$$
20 y_{1}+13 y_{2}+12 y_{3}+7 y_{4}+3 y_{5} \leq w
$$

$$
20 z_{1}+13 z_{2^{+}} \ldots+3 z_{4} \leqslant w
$$

$$
x_{1}+y_{1}+z_{1}=1 \quad(\text { Task } y)
$$

And

$$
x_{2}+y_{2}+z_{2}=1 \quad(\text { Task } 2)
$$

$$
\left[\begin{array}{c}
0 \leqslant x_{1, \ldots} x_{5} \leqslant 1 \\
y_{1, \ldots,}, y_{5} \\
z_{1, \ldots} z_{5}
\end{array}\right.
$$

and are in π
Integer Program

$$
\left(x_{1}, \ldots, z_{5} \in\{0,1\} \quad \text { Boolean }\right)
$$

$$
\begin{aligned}
& x \quad \frac{C}{\lambda} \quad x_{1}, \ldots x_{5}
\end{aligned}
$$

$$
\begin{aligned}
& z \quad \begin{array}{cc}
0 & z_{1}, \ldots, 75
\end{array} \\
& \begin{array}{c}
x_{i}=1 \text { if person } 1 \text { does task } i . \\
0 \text { otherwise }
\end{array} \\
& \begin{array}{lllllll}
y_{i}=1 & \cdots & \cdots & 2 & \cdots & \cdots & i \\
z_{i}=1 & \cdots & \cdots & 3 & \cdots & \cdots & i
\end{array}
\end{aligned}
$$

Bin packing:

Tasks length: 200, 19, 17, 26,53, 2, 7, 98
How to divide among. 3 people sit. max work that any che person does is minimized?
In practise: Sort: $200,98,53,26,19,17,7,2$
Step 1: $200 \rightarrow X$
Step 2: next largests \rightarrow Y until go over 200 etc:

Say: 200, 199, 198, etc...

$$
\begin{aligned}
& X \rightarrow 200 \\
& Y \rightarrow 199,198 \\
& 1 \rightarrow 1
\end{aligned}
$$

Offer there are practical algorithms that work well to within some reasonable \% of error...

Weighted Bipartite Matching (an IP that can be solved with LP)

(if you use simplex method) (or if opt. Sol. is unique)

$$
U_{\text {tility }}=20 x_{1 m}+18 x_{1 T}+17 x_{2 m}+21 x_{2 T}
$$

$x_{\text {lm }}=\left\{\begin{array}{l}1 \text { if Group presents on Monday } \\ 0 \text { otherwise }\end{array}\right.$
Constraints: Group 1: $X_{1 m}+X_{1 T}=1$
Group 2: $\quad x_{2 m}+x_{2 T}=1$
Monday: $\quad X_{1 m}+X_{2 m}=1$
Tuesday! $\quad X_{1+}+X_{2 T}=1$

$$
\begin{aligned}
& x_{1 m}, x_{1 T} \\
& x_{2 m}, x_{2 t} \\
& 0 \text { or } 1 \ldots \\
& 0 \leq \text { all } \leq 1
\end{aligned}
$$

Maximize Utility sit. solves the watching problem

Sept 21, 2018
Deadline for proposals \leadsto Friday, October 5
Applications: - Graph Colouring

- "Baby" Sudoku (4×4 Sudoku)
- Markowitz Model, Traveling Salesman Problem (TSP),
$\underset{\text { Programming }}{\text { Convex }} \rightarrow$-Progressive Taxation
Homework "1 is "out of 20 points" 20 might change
Problems with software:
- Gurcbi or Mac you might be missing X ode Commend Lime
- Lido (may have used in Math 340)

INTEGERS in LINDO means variable $\{0,1\}$ GIN ("generalized integer") means integer ($\mathbb{Z}=\{0, \pm 1, \pm 2,-\})$

Graph Colouring:
example
Graph:
Vertex Set
Edge Set $=$
set of "pairs"
of vertices

$$
V=\{1,2,3,4\}
$$

$$
E=\{\{1,2\},\{2,3\},\{3,4\},\{4,1\},\{2,4\}\}
$$

Problem: Given a graph $V=\{1, \ldots, n\}$ (giver n)
given E, giver a number of colours.
Say 3 colours. Question! can you colour the vertices so that no two vertices of the same color are joined by an edge.

Example

3 colours.
Let $X_{i j}= \begin{cases}1 & \text { if vertex } i \text { ir coloured } j \\ 0 & \text { otherwise }\end{cases}$
Is it feasible that:
$x_{i j}$ are $\{0,1\}, \quad i=1, \ldots, 4, \quad j=1,2,3$
$0 \leq x_{i j} \leq 1, \quad x_{i j} \in \mathbb{Z}=$ integers :
Vertex I should have are colow: $x_{11}+x_{12}+x_{13}=1$

Vertex $1 \& 2$ should be different colours:

$$
\begin{aligned}
& x_{11}+x_{21} \leqslant 1 \\
& x_{12}+x_{22} \leqslant 1 \\
& x_{13}+x_{23} \leqslant 1
\end{aligned}
$$

 is feasible
(2)

Suddku 4×4 (easy)

row
1
y
oR

14	2	3	4
5	6	7	8
9	10	11	12
13	16	15	1

4 colows $\{1,2,3,4\}$

Q
(B)
©

Sept 24:
-Wednesday: batter part of class devoted to finding project groups

- Next Homework: Magic square type question (Rem! Gurobi has a Sudjlun lp file / model example)
- Threshold penenomena are always a good (reliable) research topic:
 rather than

- Sample proposal will be on website
- A few other IP (integer programs)
- Quadratic program
- Other examples

Standard example: Merkowitz model.

