SOLUTIONS TO HOMEWORK #1, MATH 441, FALL 2018

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2018. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You may work together on homework, but you must write your own code/software; you must write up your own solutions individually.
- (2) You must acknowledge with whom you worked. You must also acknowledge any sources you have used beyond the textbook and class material.
- (3) In all these problems you must **justify your answer** unless the problem states otherwise; you will not be given any credit for stating the correct answer without a **written justification** that your answer is correct.
- (4) Submit the entire homework as a single PDF file to canvas.ubc.ca.

Homework Problems.

- (1) Say that you allow yourself at most 12 hours of TV per day, which consists of
 - (a) x_1 hours of "The Expanse" reruns,
 - (b) x_2 hours of "The X-Files" reruns,
 - (c) x_3 hours of "The Walking Dead" reruns,
 - (d) x_4 hours of other documentary programs,
 - which gives you a utility of

$$U(\mathbf{x}) = 10x_1 + 9x_2 + 5x_3 + 2x_4$$
.

In addition, you are allowed to watch at most 2.3 hours of The Expanse, and at most 3.9 hours of The X-Files.

(a) Write an LP that finds the TV viewing that maximizes your utility given the the above constraints; no justification is needed for this part.

Research supported in part by an NSERC grant.

Solution:

 $\max \quad 10x_1 + 9x_2 + 5x_3 + 2x_4 \quad \text{s.t.} \\ x_1 + x_2 + x_3 + x_4 \le 12 \\ x_1 \le 2.3 \\ x_2 \le 3.9 \\ x_1, \dots, x_4 \ge 0$

(b) What is the optimal solution of the above optimization problem? Justify your answer.

Solution: $x_1^* = 2.3$, $x_2^* = 3.9$, and $x_3 = 5.8$. [There are many ways to justify this; here is one way.]

- (i) First we claim that $x_1 + x_2 + x_3 + x_4 = 12$ in an optimal solution, for otherwise $x_1 + x_2 + x_3 + x_4 < 12$ and we could increase x_3 while fixing the other variables, which would increase the objective.
- (ii) Next we claim that $x_1 = 2.3$ in optimality, since otherwise $x_1 < 2.3$ and $x_2 + x_3 + x_4 > 9.7$; hence we could increase x_1 some amount in exchange for the same decrease in one of x_2, x_3, x_4 , preserving feasibility and increasing the objective (since x_1 has the highest coefficient in the objective).
- (iii) Similarly $x_2 = 3.9$ in optimality, for otherwise we could increase the objective by increasing x_2 and decreasing x_3 and/or x_4 .
- (iv) Similarly $x_3 = 5.8$, for otherwise $x_4 > 0$ and we can increase the objective by putting the x_4 TV hours into x_3 . Hence the optimal solution is $x_1^* = 2.3$, $x_2^* = 3.9$, and $x_3 = 5.8$.
- (c) Use Gurobi (or some other program) to solve this LP. Provide a printout of your code/software (encoding this LP), and of the solution Gurobi provides. If you don't use Gurobi, you have to indicate what

your code/software is doing.

Solution: See supporting Gurobi txt files on the course homepage. Since the LP in this question is similar to examples done in class on TV watching, I have simply modified one of these .lp files.

(d) What is the optimal solution and objective (do not use scientific notation)?

Solution: $x_1^* = 2.3$, $x_2^* = 3.9$, $x_3^* = 5.8$, $x_4^* = 0$, objective is 87.1 (reported as 8.710000000e+01 in the Gurobi session). See supporting Gurobi txt files.

(e) Use Gurobi or your software to solve the same problem with the additional constraint that x_1, \ldots, x_4 have to be integers.

Solution: $x_1^* = 2$, $x_2^* = 3$, $x_3^* = 7$, $x_4^* = 0$, objective is 82. See supporting txt files.

(2) Consider the following variant of Exercise 1: x_1, \ldots, x_4 are the same and satisfy the same constraints, but your utility function involves a parameter $B \in \mathbb{R}$ and is given as

 $U(\mathbf{x}) = 10x_1 + 9x_2 + 5x_3 + 2x_4 + B(12 - x_1 - x_2 - x_3 - x_4),$

[which reflects an additional utility of B per each hour of TV that you don't watch]. Describe the optimal solutions for all values of $B \in \mathbb{R}$, and **justify your answer** (explain this in words; your justification can appeal to the simplex method, but this is not recommended or required). [Hint: The optimal solution changes as B passes through certain values, such as B = 10: the optimal solution for $B \ge 10$ is different than that for $10 \ge B \ge 9$.]

Solution: If we set $x_5 = 12 - x_1 - x_2 - x_3 - x_4$, then the LP becomes
$\max 10x_1 + 9x_2 + 5x_3 + 2x_4 + Bx_5 \text{s.t.}$
$x_1 + x_2 + x_3 + x_4 + x_5 \le 12$
$x_1 \le 2.3$
$x_2 \le 3.9$
$x_1,\ldots,x_5\geq 0$
Arguing as in the first problem, the optimal solutions become:
(a) $B > 10$: $x_5^* = 12$, $x_1^* = x_2^* = x_3^* = x_4^* = 0$, since for $B = 10$ the
variable x_5 has the highest objective coefficient (and the x_1, \ldots, x_5
are interchangeable, within their bounds). (b) $0 < R < 10$. Similarly $\pi^* = 2.2 \pi^* = 0.7 \pi^* = \pi^* = 0$
(b) $9 < B < 10$: Similarly $x_1 = 2.3$, $x_5 = 9.1$, $x_2 = x_3 = x_4 = 0$, since x_1 has the highest coefficient and then x_2 : hence we let x_1 .
to be its maximum value, and put the rest of the hours into r_r
(c) $5 < B < 9$: Similarly $x_1^* = 2.3$, $x_2^* = 3.9$, $x_5^* = 9.7$, $x_2^* = x_4^* = 0$.
since x_5 's coefficient is between that of x_2 and x_3 .
(d) $B < 5$: Similarly $x_1^* = 2.3, x_2^* = 3.9, x_3^* = 9.7, x_5^* = x_4^* = 0$, since
x_5 's coefficient is lower than that of x_3 .
For cases on the border, such as $B = 10$, $B = 9$, and $B = 5$, there
are infinitely many solutions. For example, if $B = 10$ then either the
solution for $B > 10$ or $9 < B < 10$ works, but you can have any
"convex combination" of these solutions, i.e., and combination of x_1
and x_5 with $x_1 + x_5 = 12$ and $0 \le x_1 \le 2.3$.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf