
Linear Complementarity and Mathematical
(Non-linear) Programming

Joel Friedman, Dept. of Math., UBC

April 3, 1998

1 Introduction

The goal of these notes is to give a quick introduction to convex quadratic programming
and the tools needed to solve it. We assume that the reader is familiar with the
dictionary approach to the simplex method. Tableaux can be used for everything done
here, but they look a little less intuitive to us. Hence we will stick with dictionaries.

A standard form for a linear program is maximize cTx subject to Ax ≤ b and
x ≥ 0. In quadratic programming we subtract from cTx a quadratic function of x.
When this quadratic term is convex, i.e. takes on only non-negative values, then the
problem becomes much easier to solve than otherwise.

Both linear programming and (convex) quadratic programming can be reduced to
the linear complementarity problem. In addition to this, the linear complementarity
problem is easy to explain, easy to solve under certain conditions, and is therefore
the starting point of these notes. We then discuss the Karush-Kuhn-Tucker conditions
which reduce (convex) quadratic programming to the linear complementarity problem.

Throughout these notes all vectors will be column vectors unless otherwise indi-
cated. The only exception to this rule will be gradients; if f :Rn → R is any differen-
tiable function, then

∇f = [∂f/∂x1 · · · ∂f/∂xn]

is a row vector1. All dot products will be indicated by writing transposes, e.g. the dot
product of x and y will be written xTy or yTx.

1We think of the gradients as acting (via dot product) on column vectors, which means they must
be row vectors (unless we want to write transpose signs everywhere).

1



2 The Linear Complementarity Problem

The linear complementarity problem is given a q ∈ Rp and a p× p matrix, M, to find
w, z ∈ Rp satisfying

w = q + Mz, wz = 0, w, z ≥ 0. (2.1)

Here wz is interpreted as componentwise multiplication, so that wz = 0 means that
for each i we have wizi = 0, i.e. at least one of wi, zi is zero. (Notice that the w, z have
no relationship to the objective variables w, z that we used in linear programming.)
We will give two important types of problems which can be viewed as special cases of
this linear complementarity problem.

By complementary slackness, we know that linear programming can be seen as a
special case of equation 2.1. Namely, maximizing cTx subject to Ax ≤ b and x ≥ 0
is equivalent to solving

s = b−Ax, u = −c + ATy, ux = 0, sy = 0

and x,y, s,u ≥ 0,

where s,u are the primal slack and dual slack variables. Hence our linear program is
equivalent to solving equation 2.1 for

w =

[
u
s

]
, z =

[
x
y

]
, q =

[
−c
b

]
,

and M =

[
0 AT

−A 0

]
.

The important second problem which is a special case of the linear complementarity
problem is that of convex quadratic programming. We will explain it in detail later in
this note. Roughly speaking, this problem is like linear programming, except that
the objective function (which is minimized, not maximized) is allowed to be a convex,
quadratic function of the variables.

3 An Algorithm for Linear Complementarity

In this section we describe an algorithm for the linear complementarity problem, due
to Lemke and Howson. This algorithm may not work, but in the next section we will
give conditions on M which ensure that the algorithm works; these conditions on M
will be satisfied in a number of important cases.

To describe our algorithm, we view

w = q + Mz

2



as a dictionary for the basic variables, w, in terms of the nonbasic variables, z. If
q ≥ 0, then this dictionary is feasible, i.e. the corresponding basic feasible solution
(z = 0 and w = q) is non-negative, and we are done. If not, then we begin a two
phase algorithm.

Phase I of the algorithm involves adding an auxiliary variable, z0, and involves one
pivot. Namely, we modify the dictionary to

w = q + Mz + 1z0,

where 1 is the column vector all of whose entries are 1. Now we make z0 enter the
basis and choose the leaving variable from w so as to make the new dictionary feasible
(this means that all the variables, including z0, must be non-negative). This is the end
of phase I.

Let us explain the goal of phase II. Our algorithm will end if we reach a dictionary
with the following properties: (1) z0 is nonbasic, and (2) for each i = 1, . . . , p we have
either zi or wi is a nonbasic variable. Indeed, condition (1) will ensure that z0 = 0
in the corresponding BFS, and so w = q + Mz holds; condition (2) will ensure that
wz = 0. We call a dictionary satisfying conditions (1) and (2) a terminal dictionary.
We call a dictionary balanced if it satisfies condition (2), i.e. if for each i at least one
of wi, zi is nonbasic.

To arrive at a terminal dictionary, phase II pivots through balanced, feasible dic-
tionaries. This is done as follows. If we are at a non-terminal dictionary, then z0 is
basic, and some variable, either a wi or a zi has just left the dictionary. Which variable
should enter the dictionary on the next iteration? Only if wi or zi enters can we be
assured that the new dictionary will be balanced; since we don’t want to return to
immediately return to same dictionary twice, we insist that if wi left then zi must
enter on the next iteration, and that if zi left then wi must enter.

To better summarize the Lemke-Howson algorithm, we shall say that wi is the
complement of zi and vice versa.

Summary of the Lemke-Howson algorithm: In phase I we add an auxiliary
variable z0 and pivot once to have z0 enter and to have the new dictionary feasible.
In phase II we repeatedly pivot, always maintaining feasibility in our dictionaries, and
always taking the entering variable being the complement of the previously leaving
variable. If at some point z0 leaves the dictionary, we are done.

We illustrate this method on the problem:

maximize 2x1 + x2 s.t. x1 + x2 ≤ 3, x1, x2 ≥ 0.

We have the primal and dual dictionaries:

x3 = 3− x1 − x2
u1 = −2 + u3

u2 = −1 + u3

3



where the ui are the renumbered dual variables. Setting

w1 = u1, w2 = u2, w3 = x3, z1 = x1, z2 = x2, z3 = u3

we get a linear complementarity problem in the notation as before. However, since xi
and ui are complements, we will keep the x’s and u’s in the following calculation (the
reader who likes can rewrite the equations below with w’s and z’s).

Entering phase I we add the auxiliary z0 to get:

u1 = −2 + z0 + u3

u2 = −1 + z0 + u3

x3 = 3 + z0 − x1 − x2

So z0 enters and u1 leaves, to get

z0 = 2 + u1 − u3

u2 = 1 + u1

x3 = 5 + u1 − u3 − x1 − x2

Now we enter phase II. Since u1 left, x1 now enters and we find x3 leaves:

z0 = 2 + u1 − u3

u2 = 1 + u1

x1 = 5 + u1 − u3 − x3 − x2

Since x3 left, u3 enters; we find z0 leaves and we are done:

u3 = 2 + u1 − z0

u2 = 1 + u1

x1 = 3 + z0 − x3 − x2

Our optimal solution to original primal LP is (x1, x2) = (3, 0), and the optimal solution
to the dual is y1 = 2 (since y1 = u3).

Discussion Question 3.1 In the final dictionary, the basic x’s were written only in
terms of nonbasic x’s and z0; similarly for the u’s. Do you think that this is always
the case?

Pitfalls of the Lemke-Howson algorithm. Just like in the simplex method,
there are a few potential problems with the Lemke-Howson algorithm. We divide them
into three: (1) degeneracies, (2) cycling without degeneracies, and (3) a situation in
which no variable leaves a dictionary. In the next section we will deal with the latter

4



two problems in detail. Here we summarize the results and deal completely with the
first problem.

By a degeneracies we mean a situation in which q has a zero, or in which the choice
of leaving variable is ambiguous (leading to a dictionary with a zero for the constant
term of one variable). While this is not necessarily a problem, it is undesirable because
it is hard to make sure you won’t cycle when degeneracies occur. One solution is to
use the perturbation method just as in linear programming, i.e. add ε, ε2, . . . to the
constant terms of the dictionary. The same argument used in linear programming
shows that such a dictionary can never degenerate. This gives one way to completely
take care of degeneracies. We will give an example at the end of this section.

Once we eliminate the degeneracies, it turns out that cycling is impossible. How-
ever, this is true for reasons that are very different than in linear programming; we
discuss these reasons in the next section.

Finally, it may happen that no variable can leave the dictionary, and the algorithm
stops. Under a certain condition on M, this will imply that the linear complementarity
problem has no solution.

Definition 3.2 M is said to be copositive if xTMx ≥ 0 for all x ≥ 0. M is said to
be copositive-plus if it is copositive and if (M + MT )x = 0 for all x ≥ 0 such that
xTMx = 0 and Mx ≥ 0.

This the next section we will prove:

Theorem 3.3 If M is copositive-plus, then the Lemke-Howson algorithm can only
stop with no leaving variable if the linear complementarity problem has no solution

Proposition 3.4 If M comes from complementary slackness in a linear program,
then M is copositive-plus.

We will also see that the M arising from convex quadratic programming is also
copositive-plus. This fact and the above proposition follow easily from:

Proposition 3.5 Let M be positive semidefinite; i.e. xTMx ≥ 0 for all x. (Note: M
is not assumed to be symmetric2.) Then M is copositive-plus

This proposition follows easily from the spectral theorem3 applied to M + MT .
We finish with our degeneracy example, from the problem

minimize x1 + x2 s.t. x1 + x2 ≤ 2.

2M is symmetric if MT = M.
3The spectral theorem says that any symmetric matrix has a purely real orthonormal

diagonalization.

5



We get primal and dual dictionaries

x3 = 2− x1 − x2 + z0

u1 = −1 + u3 + z0

u2 = −1 + u3 + z0

We see that if z0 enters then either u1 or u2 can leave, a degeneracy. So before pivoting
we add ε’s to the equations:

x3 = 2 + ε− x1 − x2 + z0

u1 = −1 + ε2 + u3 + z0

u2 = −1 + ε3 + u3 + z0

Now z0 enters and u2 leaves, giving

x3 = 3 + ε− ε3 − x1 − x2 − u3 + u2

u1 = ε2 − ε3 + u2

z0 = 1− ε3 − u3 + u2

Now x2 enters (since u2 previously left), so that x3 leaves:

x2 = 3 + ε− ε3 − x1 − x3 − u3 + u2

u1 = ε2 − ε3 + u2

z0 = 1− ε3 − u3 + u2

Now u3 enters and z0 leaves:

x2 = 2 + ε− 2ε3 − x1 − x3 + z0

u1 = ε2 − ε3 + u2

u3 = 1− ε3 − z0 + u2

Taking ε→ 0 we get the solution x = [0 2 0]T , u = [0 0 1]T .

4 More on the Lemke-Howson Algorithm

We will now discuss (1) cycling without degeneracies, and (2) stopping with no leav-
ing variable in the Lemke-Howson algorithm. To understand cycling we invoke the
“museum principle,” otherwise known as the “train principle.”

Imagine that you are in a museum, and you start visiting its rooms. The museum
has the following properties:

• all its rooms are labelled “stop” or “continue,”

6



• all “continue” rooms have at most two doors,

• the room you start in is a “continue” room with only one door, and

• the museum has only finitely many rooms.

Assume your room visiting satisfies:

• if you reach a “stop” room then your visiting stops,

• if you reach a “continue” room with one door then your visiting stops, and

• if you reach a “continue” room with two doors then your visiting continues,
leaving the room through the other door (i.e. the one through which you did not
enter).

The “museum principle” says that you will never cycle, and that in a finite number of
room changes your visiting will stop. It is pretty easy to convince yourself of this fact
(see exercise 1).

It remains to verify that phase II of the Lemke-Howson algorithm is like this mu-
seum room visiting.

Let’s consider the museum properties. Consider the museum whose rooms are the
balanced, feasible dictionaries, and whose doors are pivots4. Clearly there are only
finitely many rooms. A room is labelled “stop” if it is a terminal dictionary, all others
are labelled “continue.” So a “continue” dictionary is one with z0 being basic; such a
dictionary has exactly one pair of complementary variables which are both nonbasic;
such a dictionary has at most two “doors,” namely each of the pair of complementary
variables can enter the dictionary in at most one way (in the absence of degeneracies).

Our last claim is that we begin phase II in a room with only one door. Indeed, in
phase I, initially z0 appeared as nonbasic with a coefficient of one in each dictionary
equation. So if wi left the dictionary at the end of phase I, it follows that it appears
with a one in every dictionary equation in the beginning of phase II. Hence there is no
pivot or door in which wi enters and we arrive at a feasible dictionary (i.e. wi will be
negative in each BFS arising from a dictionary in which wi enters). Hence our initial
room has only one door.

Our visiting properties are clearly satisfied. It follows that phase II never cylces
(unless degeneracies are present).

We conclude this section with the rather tedious proof that M being copositive-plus
implies that our algorithm stops with no possible leaving variable exactly when the
linear complementarity problem is not feasible.

If no leaving variable is possible, then any non-negative value, t, of the entering
value gives a solution to

w = q + Mz + 1z0, wz = 0, w, z ≥ 0, z0 ≥ 0.

4By a pivot we mean the act of having one variable enter the basis and another leave.

7



As t varies, these solutions vary linearly, and hence we have solutions:

w = w∗ + twh, z = z∗ + tzh, z0 = z∗0 + tzh0 ,

and clearly at least one of wh, zh, zh0 is non-zero. From the non-negativity of w, z, z0

and the vanishing of wz we conclude:

w∗,wh, z∗, zh ≥ 0, z∗0 , z
h
0 ≥ 0, whzh = whz∗ = w∗zh = w∗z∗ = 0.

And from w = q + Mz + 1z0 we conclude

w∗ = q + Mz∗ + 1z∗0 , wh = Mzh + 1zh0 .

Clearly it suffices to establish the following claims, we which now do:

1. z∗0 6= 0,

2. zh 6= 0 (assuming non-degeneracy at the phase I pivot and no cycling)

3. zh0 = 0 and zh
T
Mzh = 0,

4. Mzh ≥ 0 and zh
T
M ≤ 0T ,

5. zh
T
Mz∗ = 0 and zh

T
q < 0,

6. there is v ≥ 0 with vTq < 0 and vTM ≤ 0,

7. the previous claim makes w = q + Mz with w, z ≥ 0 infeasible.

For the first claim, if z∗0 = 0 then our algorithm would be done. For the second claim,
notice that zh = 0 implies that wh = 1zh0 with zh0 6= 0, and from whz∗ = 0 we conclude
z∗ = 0. So as t increases, both w(t) = w∗ + twh and z0(t) = z∗0 + tzh0 increase (w(t)
in every component); hence all the z variables are nonbasic in this dictionary and one
the w variables, say wi, is nonbasic and entering (z∗0 6= 0 so z0 is basic); assuming non-
degeneracy at the phase I pivot, we see that this must be the first phase II dictionary.
But this can’t be the first phase II step, for wi is entering, and so we have cycled.

For the thrird claim, we have

0 = zh
T
wh = zh

T
Mzh + zh

T
1zh0 .

The copositivity of M implies

zh
T
Mzh = 0, and thus zh

T
1zh0 = 0.

Since zh 6= 0 we have zh
T
1 > 0, and hence zh0 = 0 and we have the third claim.

8



For the fourth claim, we have zh0 = 0 implies that Mzh = wh which is≥ 0. Then the
copositivity-plus of M gives Mzh + MTzh = 0 and hence MTzh = −Mzh = −wh ≤ 0

and so MTzh ≤ 0 or zh
T
M ≤ 0T , which is the fourth claim. For the fifth claim we

have
0 = z∗Twh = z∗TMzh = z∗T (−MTzh) = −zh

T
Mz∗,

and also

0 = zh
T
w∗ = zh

T
q + zh

T
Mz∗ + zh

T
1z∗0 = zh

T
q + zh

T
1z∗0 > zh

T
q

since zh
T
1 and z∗0 are positive.

The sixth claim holds with v = zh. The seventh claim follows since w ≥ 0 implies
vTw ≥ 0, while

vTw = vTq + vTMz,

the first summand being negative, the second non-positive.

5 Mathematical (Non-linear) Programming

In these notes we now focus on the problem

minimize f(x) subject to g(x) ≤ 0 (5.1)

where f :Rn → R and g:Rn → Rm are arbitrary functions; in other words, g rep-
resents m constraints, and both g and the objective f are allowed to be non-linear
functions. This is an example of a mathematical program, i.e. a general optimization
problem which is possibly non-linear. Notice that, as most authors do, we minimize
our objective function in the problem’s usual form.

We will be interested in a special case of this, where g is linear and f is quadratic;
this is known as quadratic programming.

Example 5.1 Consider our standard LP: max cTx s.t. Ax ≤ b, x ≥ 0. The “max
cTx” is essentially the same as “min −cTx,” so here f(x) = −cTx. The two sets of
constraints Ax ≤ b, x ≥ 0 can be written as g(x) ≤ 0 where

g(x) =

[
Ax− b
−x

]
.

In summary, our standard LP is the same as the mathematical program in equation 5.1
with

f(x) = −cTx g(x) =

[
Ax− b
−x

]
Note that f and g are linear functions of x.

9



Example 5.2 We wish to invest in a portfolio (i.e. collection) of three stocks. Let
x1, x2, x3 be the proportion of the investment invested in each the three stocks; we
have

x1 + x2 + x3 ≤ 1 x1, x2, x3 ≥ 0.

If the expected rates of returns of the stocks are r1, r2, r3, then our portfolio, P , will
have an expected rate of return

rP = r1x1 + r2x2 + r3x3 = rTx;

our portfolio’s risk, σP , is given by

σ2
P = xTSx,

where

S =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


is the “variance-covariance” matrix, which we can assume is positive semidefinite (i.e.
xTSx ≥ 0 for all x). On problem connected with the portfolio selection problem is to
minimize the risk for a given rate of return, r0. This is just

min xTSx, s.t.

−x1,−x2,−x3 ≤ 0,

x1 + x2 + x3 − 1 ≤ 0,

r1x1 + r2x2 + r3x3 − r0 ≤ 0,

−(r1x1 + r2x2 + r3x3 − r0) ≤ 0.

Noticed that we have expressed the constraint rTx = r0 as two inequalities, rTx−r0 ≤ 0
and rTx− r0 ≥ 0 or −rTx + r0 ≤ 0. We get an instance of equation 5.1 with

f(x) = xTSx, gi(x) = −xi for i = 1, 2, 3,

g4(x) = x1 + x2 + x3 − 1, g5(x) = r1x1 + r2x2 + r3x3 − r0, g6(x) = −g5(x).

Example 5.3 We consider the portfolio selection problem above, with n stocks instead
of three. We similarly get the problem

min xTSx, s.t.

−x ≤ 0, 1Tx− 1 ≤ 0, rTx− r0 ≤ 0, −rTx + r0 ≤ 0.

We get an instance of equation 5.1 with

f(x) = xTSx, g(x) =


−x

1Tx− 1
rTx− r0

−rTx + r0

 .

10



Example 5.4 In the previous example, we got n+3 constraints for the problem with
n stocks. By using substitution with rTx = r0, we may eliminate one variable and get
two fewer constraints (at the cost of complicating things slightly).

6 The Karush-Kuhn-Tucker Conditions

Consider the mathematical program

minimize f(x), subject to g(x) ≤ 0. (6.1)

We say that x0 is a (constrained) local minimum for the above program if f(x0) ≤ f(x)
for all x sufficiently close to x0 satisfying g(x) ≤ 0. Assume that f and the gi are
differentiable. One can easily show (and we shall do so in the next section):

Theorem 6.1 Let x0 be a local minimum of equation 6.1. Then there exist non-
negative u0, . . . , um not all zero such that

u0∇f(x0) + u1∇g1(x0) + · · ·+ um∇gm(x0) = 0 (6.2)

and such that for each i with gi(x0) < 0, we have ui = 0.

For any feasible x, we say that gi is active at x if gi(x) = 0. The inactive constraints
are not relevant for local considerations. It is not surprizing, therefore, to find that
the gradients of the inactive constraints don’t play a role in equation 6.2.

Remark 6.2 It is also true that if we replace some of the gi(x) ≤ 0 constrainsts
by equality constraints gi(x) = 0, then the same theorem holds except that those
corresponding ui can also be negative. This generalized form of theorem 6.1 clearly
includes the classical theory of Lagrange multipliers.

Now we consider equation 6.2 more carefully. If u0 = 0 in this equation, then the
equation does not involve f . Consequently the equation says nothing about f ; rather,
it tells us something about the constraints alone. It turns out that in many important
cases, we will know that we can take u0 6= 0; therefore we can assume u0 = 1.

Definition 6.3 Any feasible point, x0 (a local minimum or not) satisfying equation 6.2
with u0 = 1 (and ui ≥ 0 with equality at the inactive constraints) is called a Karush-
Kuhn-Tucker (KKT) point.

Being a KKT point is therefore equivalent to the KKT conditions

g(x0) ≤ 0, ∇f(x0) + uT∇g(x0) = 0 for a u ≥ 0, ug(x0) = 0.

Notice that by our conventions, ∇f(x0) is a row vector; since g is a column vector,
this means that ∇g(x0) is a matrix whose i-th row is ∇gi(x0).

In the next section we will outline a proof of the following theorem.

11



Theorem 6.4 If g(x) depends linearly on x (i.e. g(x) = Ax − b), then a local
minimum of equation 6.1 must be a KKT point. The same conclusion holds if the gi(x)
are any convex functions such that there exists a feasible point at which all constraints
are inactive. The same conclusion holds if for any feasible x, the ∇gi(x) of the active
gi are linearly independent.

In this note it is the case of linear constraints that is of interest in the examples we
present. Hence the above theorem suffices for our needs.

Example 6.5 Our standard linear program is equivalent to

f(x) = −cTx, g(x) =

[
Ax− b
−x

]
The three KKT conditions are:

1. g(x0) ≤ 0, which amounts to feasibility of x0;

2. ∇f(x0) + u∇g(x0) = 0, which is just

−cT + uT
[

A
−I

]
= 0

where I is the identity matrix; writing uT = [ud
T |us

T ] and taking transposes
yields the equivalent

us = −c + ATud,

which is just the dual equations; the condition u ≥ 0 is just dual feasibility;

3. ug(x0) = 0, which amounts to

ud(Ax− b) = 0 and usx = 0,

which is just complementary slackness.

Hence the KKT conditions for a linear program is exactly complementary slackness.

Example 6.6 Now let us add a quadratic term to f(x) in the last example, namely
we take:

f(x) = xTSx− cTx, g(x) =

[
Ax− b
−x

]
There is no loss in generality in assuming that S is symmetric (i.e. S = ST ). Only the
second KKT condition is modified; it now reads

2xTS− cT + uT
[

A
−I

]
= 0.

This yields the modified equation for the “dual slack” variables

us = −c + 2Sx + ATud.

12



Example 6.7 Consider the program for x ∈ R2

maximize x1 s.t. 0 ≤ x2 ≤ −x3
1,

in other words

f(x) = −x1, g1(x) = −x2, g2(x) = x2 + x3
1.

It is easy to see that 0 is the unique global minimum of this program. However, 0 is
not a KKT point since

∇f(0) = [−1 0], ∇g1(0) = [0 − 1], ∇g2(0) = [0 1].

Of course, the curves g1(x) = 0 and g2(x) = 0 intersect “very badly” (in a cusp) at
x = 0.

Example 6.8 Consider a program where g2(x) = −g1(x); in other words, one of your
constraints is the equality g1(x) = 0, which you reduce to two inequalities: g1(x) ≤ 0
and −g1(x) ≤ 0. Then every point satisfies equation 6.2 with u1 = u2 = 1 and the
other ui’s zero (since ∇g2 = −∇g1). So equation 6.2 has very little content in this
case, and it is only when we insist on u0 6= 0 that we get something interesting.

Note that in this case equation 6.2 may give us something interesting if we left
the equality g1(x) = 0 as an equality, forgot about g2, and used remark 6.2; then
u2∇g2(x0) would disappear from equation 6.2 but u1 would be allowed to be any real
value. Then there would be no trivial u 6= 0 satisfying equation 6.2.

This last example goes to show that sometimes it is better not to write an equality
as two inequalities.

7 More on the Karush-Kuhn-Tucker Conditions

In this section we indicate the proofs of the results of the previous section.
Theorem 6.1 can be proven in two simple steps:

Proposition 7.1 Let x0 be a local minimum of equation 6.1. There can exist no
y ∈ Rp such that yT∇f(x0) < 0 and yT∇gi(x0) < 0 for those i satisfying gi(x0) = 0.

Proof Calculus shows that for small ε > 0 we have x0+εy is feasible, and f(x0+εy) <
f(x0), which is impossible.

2

Proposition 7.2 Let v0, . . . ,vm ∈ Rp be such that there exists no y ∈ Rp with yTvi <
0 for all i. Then there is a non-zero u ≥ 0 with

u0v0 + · · ·+ umvm = 0.

13



Proof Consider the linear program: maximize 0 (yes 0 . . .) subject to yTvi ≤ −1
for all i, viewed as a linear program in y with vi given. This LP cannot be feasible.
Putting it into standard form by introducing variables x, z ≥ 0 with y = x− z, this is
the LP: maximize 0 subject to xTvi− zTvi ≤ −1. Its dual is minimize −u0− · · ·− um
subject to [

v0 · · · vm
−v0 · · · −vm

]
u ≥ 0, u ≥ 0.

The above conditions on u are the same as

u0v0 + · · ·+ umvm = 0, u ≥ 0.

Since the dual is feasible (for we can take u = 0), and since the primal is infeasible, it
must be the case that the dual is unbounded. Hence there is a u satisfying the above
conditions with −u0 − · · · − um as small as we like; taking −u0 − · · · − um to be any
negative number produced a u 6= 0 with the desired properties.

2

The remark about replacing some constraints by equalities follows from the im-
plicit function theorem. Namely, if the gi(x) = 0 constraints have linearly dependent
gradients at x0, then the desired equation is trivially satisfied. However, if they are
linearly independent, then we can apply the implicit function theorem to get a “nice”
level set of the equality constraints near x0 and then apply the above two propositions
on this level set.

An analogue of proposition 7.2 offers strong insight into the KKT conditions.
Namely we can similarly show:

Proposition 7.3 Let v0, . . . ,vm ∈ Rp be such that there exists no y ∈ Rp with yTv0 <
0 and yTvi ≤ 0 for all i ≥ 1. Then there is a non-zero u ≥ 0 with

u0v0 + · · ·+ umvm = 0 and u0 > 0.

Corollary 7.4 A point x0 is a KKT point iff there exists no y ∈ Rp such that
yT∇f(x0) < 0 and yT∇gi(x0) ≤ 0 for those i satisfying gi(x0) = 0.

To better express the above corollary and to outline a proof of theorem 6.4 we make
the following definitions.

Definition 7.5 A y ∈ Rp is a feasible seeming direction with respect to (a feasible)
x0 if yT∇gi(x0) ≤ 0 for those i satisfying gi(x0) = 0.

Definition 7.6 Let c(t) be an Rp valued function of t defined in a neighbourhood of
t = 0. We say that c represents (the direction) y at x0, if c(0) = x0 and if c is
differentiable at t = 0 and c′(0) = y.

14



So a “feasible seeming direction” is a direction (or a vector), y, such that curves
representing this direction seem like they will be feasible, since gi(x0) ≤ 0 for each i
and yT∇gi(x0) ≤ 0 for i associated to active constraints. The problem, however, is
that if yT∇gi(x0) = 0 for an active i, the representing curves may be infeasible (they
are only feasible to “first and second order”).

Definition 7.7 We say that y can be feasibly represented at x0 if there is a curve, c,
that represents y at x0 and that c(t) is feasible for t > 0.

For example, in example 6.7, the direction [1 0]T at [1 0]T is seemingly feasible but not
feasibly representable.

Theorem 6.4 follows easily from the following observation:

Proposition 7.8 Let g be such that any feasible seeming direction at a feasible point
is feasibly representable. Then any local minimum is a KKT point.

The hypothesis in this proposition is known as the “constraint qualification” of Kuhn
and Tucker.

8 Convex Programming

A function, f(x) is convex if

f
(
αx + (1− α)y

)
≤ αf(x) + (1− α)f(y)

for all 0 ≤ α ≤ 1 and x,y in the domain5 of f . For a twice differentiable function, f(x),
of one variable, this amounts to f ′′(x) ≥ 0, and for f(x) of any number of variables
this amounts to the Hessian being positive semidefinite.

In particular, a quadratic function f(x) = xTSx− cTx is convex iff xTSx ≥ 0 for
all x. So

4x2
1 + 5x2

2 + 6x2
3, x2

1 + 3x1x2 + 10x2
2,

are convex, quadratic functions, but

−x2
1 + x2

2, 4x1x2, x2
1 + 3x1x2 + x2

2

are not.
Quadratic programming becomes hard, in a sense, when the quadratic objective

function, f(x), fails to be convex. It is not hard to see why: consider the problem

minimize f(x) = −x2
1 − · · · − x2

n, s.t. −a ≤ xi ≤ b

5We are therefore assuming that if x,y are in the domain of f , then so is αx + (1− α)y, i.e. that
the domain of f is convex.

15



with 0 < a < b. This program has 2n local minima, namely where each xi is either
−a or b. Each of these 2n local minima satisfy the KKT conditions. However, only
x = [b b . . . b]T is a global minimum.

If we want to use the KKT conditions to solve a quadratic program, we can most
easily do so when any KKT point is a global minimum. This works when the objective
is convex:

Theorem 8.1 Let f and g1, . . . , gm be convex functions. Then any KKT point for

minimize f(x) subject to g(x) ≤ 0

is a global minimum for the above program.

Proof (Outline) Let x0 be a KKT point and let y be any feasible point. Considering
the line x(t) = (1− t)x0 + ty in t it is easy to show that x(0) is a global minimum for
the above mathematical program restricted to x(t). (In essence we reduce the theorem
to the one dimensional case, which is easy.)

9 Quadratic Programming

Let us return example 6.6, where we minimize f(x) subject to g(x) = 0 where

f(x) = xTSx− cTx, g(x) =

[
Ax− b
−x

]

We saw that the KKT conditions amount to: (1) feasibility, namely Ax ≤ b and
x ≥ 0, (2) a “dual slack” variable equation:

us = −c + 2Sx + ATud,

and (3) “complementary slackness” type conditions:

ud(Ax− b) = 0 and usx = 0.

We may form this as a linear complementarity problem with

w = q + Mz, wz = 0, w, z ≥ 0,

where we set xs = b−Ax and

w =

[
us

xs

]
, z =

[
x
ud

]
, q =

[
−c
b

]
,

and M =

[
2S AT

−A 0

]
.

16



As we said before, any solution of this linear complementarity problem will be a
KKT point and hence, provided that f is convex, it will be a global minimum. So we
turn our attention to the case where f is convex, i.e. where S (assumed symmetric) is
positive semidefinite, i.e. xTSx ≥ 0 for all x.

Proposition 9.1 If S is positive semidefinite, then M is positive semidefinite and
hence copositive plus.

Proof The −A and the AT in M cancel in computing zTMz, i.e.

zTMz = zT
[

2S 0
0 0

]
z,

and the matrix on the right is clearly positive semidefinite exactly when S is.

2

We may therefore use the Lemke-Howson algorithm and the KKT conditions to
solve any convex quadratic program.

Example 9.2 Consider the problem of minimizing f(x) = (x1−1)2 +(x2−2)2 subject
to x1 + x2 ≤ 1 and the xi’s being non-negative. This is a form of the above quadratic
program with

S =

[
1 0
0 1

]
, c = [2 4]T , A = [1 1], b = [1].

We get the initial dictionary plus auxiliary z0 being

u1 = −2 + 2x1 + u3 + z0

u2 = −4 + 2x2 + u3 + z0

x3 = 1− x1 − x2 + z0

We get z0 enters and u2 leaves, yielding:

u1 = 2 + 2x1 − 2x2 + u2

z0 = 4− 2x2 − u3 + u2

x3 = 5− x1 − 3x2 − u3 + u2

Then x2 enters and u1 leaves, yielding

x2 = 1 + x1 − (1/2)u1 + (1/2)u2

z0 = 2− 2x1 + u1 − u3

x3 = 2− 4x1 + (3/2)u1 − u3 − (1/2)u2

17



The x1 enters and x3 leaves, yielding

z0 = 1 + (1/2)x3 + (1/4)u1 + (1/4)u2 − (1/2)u3

x1 = (1/2)− (1/4)x3 + (3/8)u1 − (1/8)u2 − (1/4)u3

x2 = (3/2)− (1/4)x3 − (1/8)u1 + (3/8)u2 − (1/4)u3

Finally u3 enters and z0 leaves, yielding

x1 = 0 + (1/2)z0 − (1/2)x3 + (1/4)u1 − (1/4)u2

x2 = 1 + (1/2)z0 − (1/2)x3 − (1/4)u1 + (1/4)u2

u3 = 2− 2z0 + x3 + (1/2)u1 + (1/2)u2

We see that the optimal solution is (x1, x2) = (0, 1).

10 General Duality Theory

The KKT conditions that part of duality theory may carry over to any mathematical
program. This is indeed true, and we will give a very brief introduction as to how this
is done.

We consider, as usual, the mathematical program

minimize f(x) subject to g(x) ≤ 0.

We define the Lagrangian, L(u), as the function6

L(u) = min
x∈Rn

L(x,u) where L(x,u) = f(x) + uTg(x).

The dual problem becomes

maximize L(u), s.t. u ≥ 0.

It is easy to see that if the maximum of the dual problem is d, and the minimum of
the original (primal) mathematical program is v, then d ≤ v. v − d is referred to as
the duality gap.

The duality theory of linear programming is generalized by the above duality the-
ory, as is easy to check. For feasible linear programs, the duality gap is zero. The
propositions stated below give a further indication of how the above duality theory
resembles that in linear programming.

Recall that x is feasible if g(x) ≤ 0; we say that u is feasible if u ≥ 0.

6Sometimes authors will also restrict x to lie in a set X ⊂ Rn, in addition to the constraints on
x placed by g. In this case all of duality theory works, with slight modifications. For example, L(u)
would be defined as the minimum of L(x,u) with x ∈ X .

18



Proposition 10.1 If for some feasible u∗ and x∗ we have L(u∗) = f(x∗), then x∗ is
an optimal solution.

Proposition 10.2 If feasible u∗ and x∗ satisfy f(x∗) + u∗Tg(x∗) = L(u∗) and
u∗ g(x∗) = 0, then x∗ is an optimal solution.

In both of these propositions, the hypotheses imply that the duality gap is zero.
Furthermore, that fact that the duality gap is zero is, in a sense, what makes these
propositions work.

11 Exercises

Exercise 1 Convince yourself that the museum principle is true. [Hint: assume that
you cylce: consider the first room you visit twice.]

Exercise 2 Consider the infeasible linear program

max x1 + 2x2, s.t. x1 + 2x2 ≤ −1, and x1, x2 ≥ 0.

Use complementary slackness to write down a linear complementarity version of this
problem. Use the Lemke-Howson algorithm to show that the linear complementarity
problem has no feasible solution.

Exercise 3 Consider the problem

max x1 + x2, s.t. − x1 + x2 ≤ 0, and x1, x2 ≥ 0.

Use complementary slackness to write down a linear complementarity version of this
problem. Perform the Lemke-Howson algorithm, using the perturbation method to
avoid degeneracies.

Exercise 4 Minimize (x1− 4)2 + (x2− 4.5)2 subject to the xi being non-negative and
x1 + x2 ≤ 1, using the KKT conditions and the Lemke-Howson algorithm.

12 Answers to the Exercises

Solution 1 Let R be the room you first visit twice. R must be a “continue” room (or
you would have stopped when you first visited it), and so it has at most two doors. We
claim all these doors are used during the first visit to R. Indeed, if R was the initial
room, then it had only one door (and you used this door). If R was not the initial
door, then you used one door to enter it, and a different door to leave it.

19



Now let S be the room you visit just before you visit R for the second time. Your
door of entry from S to R must be a new (never used) door, since S has never been
visited before. But this contradicts the claim in the previous paragraph.

Hence we cannot cycle, i.e. we cannot visit a room more than once. Hence our
visiting stops after a finite number of steps (i.e. room visits).

Solution 2 We have primal and dual (relabelled) dictionaries:

x3 = −1− x1 − 2x2,
u1 = −1 + u3,
u2 = −2 + 2u3.

We add the auxiliary variable z0:

u1 = −1 + z0 + u3,

u2 = −2 + z0 + 2u3,

x3 = −1 + z0 − x1 − 2x2.

So z0 enters and u2 leaves:

u1 = 1− u3 + u2,

z0 = 2− 2u3 + u2,

x3 = 1− x1 − 2x2 − 2u3 + u2.

Since u2 left previously, x2 now enters and hence x3 leaves:

u1 = 1− u3 + u2,

z0 = 2− 2u3 + u2,

x2 = (1/2)− (1/2)x1 − (1/2)x3 − u3 + (1/2)u2.

Since x3 left previously, u3 now enters and hence x2 leaves:

u1 = (1/2) + (1/2)x1 + (1/2)x3 + x2 + (1/2)u2,

z0 = 1 + x1 + x3 + 2x2,

u3 = (1/2)− (1/2)x1 − (1/2)x3 − x2 + (1/2)u2.

Now u2 enters, but no variable leaves. Therefore the problem is infeasible.

Solution 3 Our initial dictionary is

u1 = −1− u3 + z0

u2 = −1 + u3 + z0

x3 = 0 + x1 − x2 + z0

20



We have two degeneracies here— first of all, the constant in the x3 row is zero; second,
the constants in the u1, u2 rows are both −1, and when z0 enters there will be a tie for
which variable leaves. So to be safe we add ε’s to the dictionary:

u1 = −1 + ε− u3 + z0

u2 = −1 + ε2 + u3 + z0

x3 = ε3 + x1 − x2 + z0

So as z0 enters, u2 leaves, yielding

u1 = ε− ε2 − 2u3 + u2

z0 = 1− ε2 − u3 + u2

x3 = 1− ε2 + ε3 + x1 − x2 − u3 + u2

So x2 enters, and x3 leaves, yielding

u1 = ε− ε2 − 2u3 + u2

z0 = 1− ε2 − u3 + u2

x2 = 1− ε2 + ε3 + x1 − x3 − u3 + u2

Now u3 enters, and u1 leaves, yielding

u3 = (ε− ε2)/2− (1/2)u1 + (1/2)u2

z0 = 1− (ε/2)− (ε2/2) + (1/2)u1 + (1/2)u2

x2 = 1− (ε/2)− (ε2/2) + ε3 + (1/2)u1 + (1/2)u2 + x1 − x3

Then x1 enters but nothing leaves; we conclude that the complementarity problem is
infeasible (and so either the original primal or dual problem is infeasible; in this case
it is clearly the dual, since the primal is clearly unbounded).

Solution 4 This is a form of the above quadratic program with

S =

[
1 0
0 1

]
, c = [8 9]T , A = [1 1], b = [1].

We get the initial dictionary plus auxiliary z0 being

u1 = −8 + 2x1 + u3 + z0

u2 = −9 + 2x2 + u3 + z0

x3 = 1− x1 − x2 + z0

We get z0 enters and u2 leaves, yielding:

u1 = 1 + 2x1 − 2x2 + u2

z0 = 9− 2x2 − u3 + u2

x3 = 10− x1 − 3x2 − u3 + u2

21



Then x2 enters and u1 leaves, yielding

x2 = (1/2) + x1 − (1/2)u1 + (1/2)u2

z0 = 8− 2x1 + u1 − u3

x3 = (17/2)− 4x1 + (3/2)u1 − u3 − (1/2)u2

The x1 enters and x3 leaves, yielding

z0 = (15/4) + (1/2)x3 + (1/4)u1 + (1/4)u2 − (1/2)u3

x1 = (17/4)− (1/4)x3 + (3/8)u1 − (1/8)u2 − (1/4)u3

x2 = (21/4)− (1/4)x3 − (1/8)u1 + (3/8)u2 − (1/4)u3

Finally u3 enters and z0 leaves, yielding

x1 = (1/4) + (1/2)z0 − (1/2)x3 + (1/4)u1 − (1/4)u2

x2 = (3/4) + (1/2)z0 − (1/2)x3 − (1/4)u1 + (1/4)u2

u3 = (15/2)− 2z0 + x3 + (1/2)u1 + (1/2)u2

We see that the optimal solution is (x1, x2) = (1/4, 3/4).

22


