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1. Introduction

The point of this article is to describe some aspects of the Markowitz model
that are relevant to Math 441. We briefly review some basic probability theory
to motivate the model, and discuss the quadratic programming problems related
to it. In 2017, we referred to the textbook by Vanderbei (see the course website),
Chapter 24, for the model, and to the article I wrote “Linear Complementarity and
Mathematical (Non-Linear) Programming” (posted on the course website).

2. Models

In financial mathematics, many models to predict the future behaviour of a
system are fundamentally different than many such models in physics.

In physics, many models assume ~F = m~a, and then assume that the force ~F
comes from one or two sources. For example, the “n-body problem” assumes you
have n bodies (e.g., planets or stars), modeled by point masses, where the force is
due to a single source, namely gravitation from the other n−1 bodies. This gives a
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2 JOEL FRIEDMAN

stunning explanation of why we observe roughly elliptical orbits of planets around
our sun. This model, with three or more bodies and with certain initial conditions,
can yield trajectories that seem very chaotic. Yet the model is formulated on a
precise understanding of one very simple driving force.

In financial mathematics, systems usually have too many driving forces to (re-
alistically) model. Models typically extract a few simple quantities from a com-
plicated system, and write down a simple formula—such as a utility function to
be maximized—based on these quantities. Such formulas don’t individually model
each driving force of a complex system. Instead, the test of such a formula or
model is how well it predicts something we want to know. The Markowitz model is
a quintessential example of such financial models.

3. Probability: Expected Value and Variance

In this section we review some standard notion and ideas of probability.
Probability theory can be used to model aspects of a future event. Say that you

predict that the rainfall in Vancouver tomorrow will be between 20 to 25 centime-
tres, rounded to the nearest centimetre, according to the following probabilities:

Event number 1 2 3 4 5 6
Rainfall in cm 20 21 22 23 24 25
Probability percent 10 15 50 10 3 12
Probability, p 0.10 0.15 0.50 0.10 0.03 0.12

Let X denote the random variable of rainfall tomorrow in Vancouver. The above
table says that the probability space is divided into six possible events; event number
1 occurs with probability p1 = 0.10, and in this event X takes the value x1 = 20;
similarly p2 = 0.15 for the second event, where X takes the value x2 = 21; the
other possible values of X are

x3 = 22, x4 = 23, x5 = 24, x6 = 25,

which occur with respective probabilities

p3 = 0.50, p4 = 0.10, p5 = 0.03, p6 = 0.12.

One could imagine a more refined version of X, where we have 51 events that specify
X rounded to the nearest millimetre, between 200 mm and 250 mm; this would be
a much larger table.

Two useful measurements of a random variable are its expected value and its
variance The expected value of X, denoted X (also denoted E[X] in the literature),
is defined to be

X
def
=

6∑
i=1

pixi = p1x1 + · · ·+ p6x6,

= (0.10)20 + (0.15)21 + (0.50)22 + (0.10)23 + (0.03)24 + (0.12)25 = 22.17 .

Its varaince, denoted Var(X), is defined to be

Var(X)
def
=

6∑
i=1

pi
(
xi −X

)2
= p1

(
x1 −X

)2
+ · · ·+ p6

(
x6 −X

)2
= (0.10)(20− 22.17)2 + (0.15)(21− 22.17)2 + · · ·+ (0.12)(25− 22.17)2 = 1.8211

Of course, if there were n events instead of 6 for X, then the summations above
would range over i from 1 to n instead of to 6.
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The expected value and variance of X tell us something about X, but hardly
the whole story. The variance is always non-negative, and is zero iff the random
variable takes on the same value (over all events).

4. Fundamental Identities, Part I

Here are some identities we will use to make computations.

(1) If X,Y are random variables, then

(1) X + Y = X + Y .

(2) If X is a random variable, and a ∈ R a real number, then

aX = aX.

(3) These first two identities imply that for a, b ∈ R and random variables X,Y
we have

aX + bY = aX + bY

[i.e., “expected value” is a linear map from (real-valued) random variables
to R].

(4) In the above formula, and the special case where Y = 1, i.e., Y is the
random variable whose value 1 on all events, we have

(2) aX + b = aX + b .

(5) If X is a random variable, then

Var(X) =
(
X −X

)2
;

in other words, the variance is the expected value of the random variable
(X −X)2.

(6) The first three identities imply that

Var(X) = X2 − 2XX +
(
X
)2

= X2 − 2XX +
(
X
)2

which yields the extremely useful identity

Var(X) = X2 −
(
X
)2
.

(7) The above identities also show that if X is a random variable, and a, b ∈ R,
then

(3) Var aX + b = a2 VarX.

So (3) and (2) tell us how the variance and expected values change when
we “scale a random variable by a” and “shift (or translate) it by b,” i.e.,
take X and form a new random variable aX + b.

Hence, if you gain $100 for every centimetre of rainfall over 18 cm in the example
of Section 3, then your gain in dollars is G = 100X − 1800, whose expected value
is 2217− 1800 = 417 (dollars), and whose variance is 18, 211 (dollars squared).
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5. A Simple Example of Financial Instruments

To motivate and illustrate the Markowitz model, we will start with some simple,
contrived data. We imagine that we can spend $1000 to buy any one of five financial
instruments—four stocks and one bond—and at the end of one month there are only
four events, i.e., four conceivable future scenarios, each occuring with probability
0.25, where the increase in price of the instruments are as follows:

Event 1 Ev 2 Ev 3 Ev 4 avg var
Prob, p 1/4 1/4 1/4 1/4

C (Coke) 8 8 12 12 10 4
P (Pepsi) 8 8 12 12 10 4
A (Amazon) 8 12 8 12 10 4
N (Nozama) 12 8 12 8 10 4
B (Bond) 9 9 9 9 9 0

Notice that:

(1) C,P,A,N all have expected values 10 and variance 4.
(2) B has expected value 9 and variance 0; in other words, B, the increase in

price of the bond, has a certain value of 9.
(3) C = P , meaning that these random variables have the same values in all

events. We have 2C = C + P = 5C − 3P (the latter represents the change
in value upon buying 5 lots of Coke and short selling 3 lots of Pepsi);
they all have expected value 20 (dollars, which represents dollars per $1000
of investment) and variance 16 (dollars squared, which represents dollars
squared per $1000 of investment).

(4) Stocks in the same industries tend to move together. So while Coke and
Pepsi are competitors, they tend to move alike.

(5) A+N = 20, meaning A+N is 20 in all possible events.
(6) Nozama is Amazon spelled backwards, to indicate that it is a fictional stock

that is perfectly negatively correlated with Amazon and would not exist in
the real world. Nozama is the perfect “hedge” for Amazon, meaning a sure
(and presumably legal) way to get an increase of $20 for a $2000 investment,
i.e., 1% or 100 basis points1 over one month.

(7) B, the increase in bond price, is lower than those of the stocks, but is a
sure bet. This is typical of financial instruments.

(8) C and A are independent: each takes on the values 8, 12 with 0.5 probabil-
ity, and the joint distribution of (A,C) any of (8, 8), (8, 12), (12, 8), (12, 12)
is exactly 0.25 = (0.50)2.

(9) A + C = 16 with probability 0.25, A + C = 20 with probability 0.50, and
A+ C = 24 with probability 0.50.

(10) Hence A+ C has expected value 20 and variance

(0.25)(16− 20)2 + (0.50)(20− 20)2 + (0.25)(24− 20)2 = 8.

1A basis point is 1/100-th of one percent.
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6. Risk and the Markowitz Model

The assumption in the Markowitz model is that from all the portfolios available
to you (in a market composed of financial instruments like stocks and bonds), the
most desirable one is the one that maximizes the utility function

(4) Utility(R,µ)
def
= R− µVar(R),

where R is the return of your portfolio, and µ is parameter that depends on your
tolerance of risk when risk is taken to mean the variance; furthermore, the choice
of portfolio of n instruments, represented by random variables R1, . . . , Rn, is a
function

R = R(~w) = w1R1 + · · ·+ wnRn

[Vanderbei’s textbook uses xi’s instead of wi’s; Wikipedia currently uses wi’s],
where ~w ∈ Rn which may be subject to certain restrictions, including budget re-
strictions, legal restrictions (e.g., under what circumstances can one short sell, i.e.,
when can a wi be negative?), hedging restrictions, etc.

We remark that µ = 0 means that you are indifferent to risk (meaning variance
in your portfolio), and µ < 0 means that you are willing to “pay for risk,” which
you might apply to people at the River Rock Casino. In portfolio theory, µ > 0
where µ large indicates a great aversion to variance or “risk.”

The utility, U , has the same units of R in (4), and constant µ has units of 1/R.
For example, if R is in units of

(dollars of return)(
(dollars of investment) (months)

) ,
then the units of µ becomes(

(dollars of investment) (months)
)

(dollars of return)
.

Similarly, if you ignore the period of time, the units of µ becomes

(dollars of investment)

(dollars of return)
;

in this case, since µ,R,U all represent one type of dollars per another type of
dollars, it may be tempting to view µ,R,U as dimensionless, although this is point
of view is unlikely to be realistic (see the exercises).

6.1. Problems With Variance Aversion. There are a standard set of remarks
regarding people who are extremely risk averse when risk is measured as variance.
For example, if L is a lottery ticket that with probability p = 1/1000 will be worth
$1000, and probability q = 1− p = 999/1000 will be worth 0, then

L = 1, Var(L) = L2 −
(
L
)2

= 1000− 1 = 999.

It follows that if your aversion to variance, µ, is at least 1/999 (in units of 1/dollars),
then L alone has a negative utility, and you’d be happier to discard the lottery ticket
(giving you a utility equal to zero). For similar reasons, for any µ > 0, even a µ
extremely small, it is possible to construct a lottery ticket where you cannot lose
money in any scenario, and yet the ticket has a negative utility in terms of (4).
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For similar reasons, someone who is very averse to variance might buy an um-
brella from the UBC Bookstore in the middle of a hot day in August, with no rain
in the forecast for two weeks, as a “hedge” against the highly unlikely event of rain.

The above remarks are standard remarks in mathematical finance, and apply
to aversion to “risk” where “risk” is defined as variance or many other (seemingly
reasonable) definitions of risk measured by how the random variable differs from
its expected value. For this reason people people in finance introduce difference
measures of risk, such as VaR (value at risk) and many others. Financial markets
are driven by many forces, resulting in a large number of possible scenarios that
are difficult to predict; attempting to extract from such markets some simple mea-
surements that reliably describe “risk” and that work well in most situations is not
easy.

Still, we will see that the Markowitz model (4) is extremely useful, once we
understand when it works well and what are its limitations.

6.2. The One Instrument Markowitz model. To understand the Markowitz
model, consider portfolios based on the instruments C,P,A,N,B of Section 5.

To begin, consider portfolios based on the single instrument A. Imagine that
someone hands you 5 lots of Amazon (A) above, so that R = 5A, your utility is

R− µVar(R) = 5A− µ25 Var(A) = 5 · 10− µ25 · 4 = 50− 100µ

(so here µ is in units of (dollar)−1). So if you are very risk averse, with µ > 2, it
may seem that you’d have a higher utility (of zero) by discarding your shares. This
is absurd.

For this reason the Markowitz model is like the n-body problem for n = 1: the
case of a single instrument is too degenerate to give interesting results. And similar
to the n = 1 case of the n-body problem, there are two remedies:

(1) study the case of two instruments, or
(2) study a single instrument, but make an additional assumptions about the

system of a single instrument.

[The 1-body problem becomes interesting when we assume there is a force acting
on the single body, such as a central force. The 2-body problem, under Newtonian
gravitation, can be reduced to a 1-body central force problem. We’ll see something
similar with the Markowitz model.]

So now imagine that we have a supply of cash on hand, say ten thousand dollars,
which next month will have the same value (of ten thousand dollars) in all events
(i.e., future scenarios). And imagine that the shares of Amazon, A, that we have
must be bought from this supply of cash; by symmetry, assume that if we discard a
share of Amazon then we recover the cost of this share. Now “discarding” is really
“selling,” and it makes sense that we might sell shares of Amazon (under some
conditions).

Another way to describe the above idea is by a simple two-instrument Markov
model.

6.3. Some Two Instrument Markowitz Models. Another way to way to desribe
the above one-instrument Markowitz model is with a two-instrument Markowitz
model where one instrument is a random varible M representing “money” (or
“cash”). Hence M = 0 and Var(M) = 0, and for simplicity we set M to be units of
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$1000. Then our portfolio options are R = w1A + w2M , subject to w1 + w2 = 10
and w1, w2 ≥ 0. We get the optimization problem

(1) maximize U(~w, µ) = 10w1 − 4w2
1µ,

(2) subject to w1 + w2 = 10, and
(3) w1, w2 ≥ 0, i.e., 0 ≤ w1 ≤ 10.

The solution (see the computation in the next paragraph) is

(5) w∗
1 = min

(
10, (5/4)µ−1

)
, w∗

2 = 10− w∗
1 .

This becomes a lot more reasonable.
In more detail, to find the optimum feasible solution, take the partial derivative

of
U(w1) = 10w1 − 4µw2

1

with respect to w1 (holding any other variables fixed—U above depends on µ, which
we view as fixed)

∂U

∂w1
= 10− 8µw1.

Hence ∂U/∂w1 is positive for 0 ≤ w1 < 10/(8µ) and is negative for w1 > 10/(8µ).
Since the region of feasibility is 0 ≤ w1 ≤ 10, we see that

(1) if 10 ≤ 10/(8µ), then U(w1) for 0 ≤ w1 ≤ 10 is maximized at w∗
1 = 10; and

(2) if 10 > 1/(8µ), then U(w1) is maximized at w∗
1 = 10/(8µ).

This gives us (5).
Often there are financial instruments whose risk is close to zero, such as feder-

ally issued US or Canadian Treasury bonds or bills. [These governments can always
avoid default or underpayment simply by printing more money under extreme con-
ditions; such extreme circumstances might make your entire model chaotic, but
any model of investment makes some assumptions and becomes chaotic when the
assumptions are violated.] So more typically you would have a bond, such as B in
Section 5, with a smaller expected rate of return but little or no variance. In this
case you get an optimization problem for R = w1A + w2B, which is only slightly
more complicated than the above model, since B = 9 is a constant random variable:

(1) maximize U(~w, µ) = 10w1 + 9w2 − 4w2
1µ,

(2) subject to w1 + w2 = 10, and
(3) w1, w2 ≥ 0, i.e., 0 ≤ w1 ≤ 10.

[The formula for U(~w, µ) above is based on the fact that B = 9 is constant, so (3)
we have Varw1A+ 9 = w2

1 VarA.] Eliminating w2 = 10− w1 we have

U(~w, µ) = 10w1 + 9w2 − 4w2
1µ = 10w1 + 9(10− w1)− 4w2

1µ = 90 + w1 − 4µw2
1.

To find the optimum of this we take the partial derivative of

U(w1) = 90 + w1 − 4µw2
1

with respect to w1 (holding any other variables fixed—U above depends on µ, which
we view as fixed)

∂U

∂w1
= 1− 8µw1.

Hence ∂U/∂w1 is positive for 0 ≤ w1 < 1/(8µ) and is negative for w1 > 1/(8µ).
Since the region of feasibility is 0 ≤ w1 ≤ 10, we see that

(1) if 10 ≤ 1/(8µ), then U(w1) for 0 ≤ w1 ≤ 10 is maximized at w∗
1 = 10; and

(2) if 10 > 1/(8µ), then U(w1) is maximized at w∗
1 = 1/(8µ).
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Hence we get the optimum feasible solution:

(6) w∗
1 = min

(
10, (1/8)µ−1

)
, w∗

2 = 10− w∗
1 .

7. Fundamental Identities, Part II: Covariance and Correlation

In the previous section, the variables M and B were constants; this meant that

Var(w1A+ w2M) = w2
1 Var(A) = Var(w1A),

and similarly for M replaced with B. However, if we consider a two-instrument
portfolio R = w1A+w2X where X is not a constant, then Var(R) depends on how
A and X are related; we always have R = w1A+w2X by (1), but the situation with
variance is different. The point of this section is to give some precise statements.

One important principle from Section 5 is that although A+C and 2A (or 2C or
C+P ) all have the same expected values, the variance of A+C is 8 while the others
have variance 16. This hints at the general principle that if a collection of financial
instruments have the same expected return, a portfolio with a lot of independent
instruments will have a smaller variance than an undiversified portfolio. (Whether
or not there exists true independence between instruments is another matter. . .)

Let us make a more precise study the variance of a sum of random variables.
The convenient identity

Var(R) = R2 −
(
R
)2

implies that

Var(X + Y ) = (X + Y )2 −
(
X + Y

)2
which, after expanding terms (see the exercises), becomes

= Var(X) + Var(Y ) + 2
(
XY −X Y

)
.

In other words, the variance of X+Y is the sum of their variances plus a correction
term; we define the covariance of X and Y to be

Cov(X,Y )
def
= XY −X Y ,

a quantity which describes the correction term, i.e., we have

(7) Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ) .

Linear algebra (specifically the Cauchy-Schwarz inequality) implies that

−
√

Var(X) Var(Y ) ≤ Cov(X,Y ) ≤
√

Var(X) Var(Y ),

and that the correlation of X and Y

Corr(X,Y )
def
=

Cov(X,Y )√
Var(X) Var(Y )

(assuming that Var(X) and Var(Y ) are both nonzero), which is therefore between
−1 and 1, represents the cosine between the vectors X −X and Y − Y measured
by a “dot product” that is weighted according to event probabilites.

In the case at hand we have

Corr(A,N) = −1, Corr(A,C) = 0, Corr(A,A) = 1,

and the fact that VarA = VarN = VarC = 4 implies that

Var(A+N) = 0, Var(A+ C) = 8, Var(A+A) = Var(2A) = 4 Var(A) = 16.
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If Cov(X,Y ) = 0 then we say that X and Y are uncorrelated, and we have

Var(X + Y ) = Var(X) + Var(Y )

which is called Pythagoras’s theorem (in the context of weighted dot products). If
X,Y are independent2 then Cov(X,Y ) = 0, but the condition Cov(X,Y ) is much
weaker and can be tested (to some extent) experimentally.

8. The Usual Formulation of the Markowitz Model

A generalization of (7) is

Var(R1 + · · ·+Rn) =

n∑
i,j=1

Cov(Ri, Rj),

or, since Cov(X,X) = Var(X) and Cov(Ri, Rj) = Cov(Rj , Ri), we often write

Var(R1 + · · ·+Rn) =

n∑
i=1

Var(Ri) + 2
∑
i<j

Cov(Ri, Rj).

Upon scaling each Ri, we get

Var(w1R1 + · · ·+ wnRn) =

n∑
i,j=1

wiwj Cov(Ri, Rj),

or the equivalent formula

Var(w1R1 + · · ·+ wnRn) =

n∑
i=1

w2
i Var(Ri) + 2

∑
i<j

wiwj Cov(Ri, Rj).

The utility in the Markowitz model becomes

(8) U(~w, µ) =

n∑
i=1

wiRi − µ

 n∑
i=1

w2
i Var(Ri) + 2

∑
i<j

wiwj Cov(Ri, Rj)

 .

Typically we make some assumptions about the feasible region of ~w ∈ Rn (or
perhaps ~w ∈ Zn if we insist on purchasing a whole number of lot sizes).

9. Practical Aspects of the Markowitz Model

The Morkowitz model is important because of its simplicity and ability to give a
reasonable model for how to combine various (“risky”) assets into a portfolio with
an acceptable amount of “risk.”

We have seen that measuring risk as variance has its shortcomings (see Sub-
section 6.1), such as being able to invent lottery tickets which we would rather
discard instead of keep. This is a reflection of the fact that variance aversion is not
a fundamental law of markets, such as the law of gravitation in physics. Instead,
the Markowitz model is a way to take a markets that are driven by an extremely
large set of forces or factors, and to take some simple data about these markets
that gives some realistic idea of how to optimize portfolios.

Here are some of the important properties of the Markowitz model:

2meaning that for all a, b, the probability that X = a and Y = b simultaneously is precisely
the probability that X = a times that of Y = b
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(1) if ~w∗ has the optimum utility of a feasible portfolio (for any set of con-

straints) and ~w is another feasible portfolio, then R(~w∗) = R(~w) implies
that

Var(R(~w∗)) ≤ Var(R(~w))

(assuming µ > 0);
(2) similarly if ~w∗ has the optimum utility of a feasible portfolio (for any set

of constraints) and ~w is another feasible portfolio, then Var(R(~w∗)) =
Var(R(~w)) implies that

R(~w∗) ≥ R(~w);

(3) the expected values Ri and variances/covariances Cov(Ri, Rj) are often
easy to estimate;

(4) with µ > 0, the Markowitz model gives a “convex” quadratic optimization
problem, which is readily solvable; with µ < 0 the optimization isn’t gen-
erally easy to solve, since one generally has to check all extreme parts of
the feasible region, e.g., all the vertices of the region (see the exercises and
examples given in class);

(5) the formulas involving expected values and variances/covariances make no
assumptions about the random variables except that these expected values
and variances/covariances are not infinite;

(6) the Markowitz model exhibits many known principles of investing, and can
be used to test other princples; even if the model is not exact, it may
indicate what to expect [you certainly wouldn’t want to make investments
based on principles that fail for the Markowitz model unless you know why
these principles fail on the Markowitz model and wouldn’t fail in the real
world. . .].

For this reason, even though the Markowitz model can be improved upon, it is
an excellent place to start.

10. Closing Remarks, Fat Tails, and the Black-Scholes Volatility
Smile

After Newton’s theory of gravitation was known, inaccuracies were discovered
when Mercury passed behind the sun. These inaccuracies were later corrected by
Einstein’s theory of general relativity. So even if a first theory has some inaccuracies,
it can be a good place to start.

As mentioned before, financial models are not based a few fundamental principles
of how markets work, since markets are affected by a large number of forces that
are difficult to predict. Rather such models try to focus on some quantities that
one can measure, in a model that is simple enough to use for some predictions. You
can’t expect any model of a financial market to be perfectly accurate all the time.

A terrific example of an imperfect but useful model is the Black-Scholes formula.
It is a model that predicts the value of a simple type of stock option (a European
call or put, i.e., the option to purchase or sell a stock at a given price at some future
given point in time). The formula is based on geometric Brownian motion, which—
like a Gaussian distribution (bell curve)—is known to be unrealisitic: real world
stock price distributions are known to have fat tails, meaning that the probability
of being far from the expected value is much greater a Gaussian distribution would
have (with the same variance). The result is that the volatility of a stock, which is
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one input to the Black-Scholes formula, appears to increase as the option’s strike
(i.e., price of purchase/sell) moves away from the expected value. Plotting this
volatility as a function of the strike for known market values of a European option
shows a well-known volatility smile of stock (whose volatility is supposed to be an
intrinsic property of the stock that doesn’t change as a function of the option’s
strike).

Yet the Black-Scholes formula is useful for many reasons. For one, it is a simple
framework for pricing derivatives, and one can try to modify the framework to
get more accurate pricing. For another, if you know the prices of a few European
options and plot the volatility smile, you may be able to estimate a fair price of
other such options. In this case, of course, trying to interpolate the data is likely
a reasonable thing to do, while trying to extrapolate many be tricky; its not even
clear that stock prices should be modeled by any distribution with a finite variance.

11. Exercises

(1) Consider the solution (5) to the Markowitz utility of the model R = w1A+
w2M subject to w1, w2 ≥ 0 and w1 + w2 = 10.
(a) What is w∗

1 for the values µ = .05, µ = 1, and µ = 1000?
(b) Explain intuitively—in terms of µ representing risk aversion—why w1

is very close to 0 for µ = 1000.
(c) For the analogous solution (6) for the model R = w1A+w2B (subject

to the same conditions), what is the value of w∗
1 for the value µ = .05?

(d) Explain intuitively—in terms of the difference between the models
w1A + w2M and w1A + w2B—why for µ = .05 the value of w1 is
10 for one of the models and less than 10 for the other.

(2) Compute the Markowitz Utility U(w1, w2, µ) for the portfolio R = w1A +
w2N . [Note the formula Corr(A,N) = −1 in the Section 7, and note that
the formulas in Section 8 imply that

Var(w1X + w2Y ) = w2
1 Var(X) + 2w1w2 Cov(X,Y ) + w2

2 Var(Y ) .]

Then find the optimum feasible solution for this model under the conditions
w1, w2 ≥ 0 and w1 + w2 = 10.

(3) Compute the Markowitz Utility U(w1, w2, µ) for the portfolio R = w1C +
w2P . Then find all optimum feasible solutions for this model under the
conditions w1, w2 ≥ 0 and w1 + w2 = 10.
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