SUMMARY OF FIRST EXAMPLE

JOEL FRIEDMAN

Contents

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1) LP: $\max \vec{c}^{T} \vec{x}$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq 0$. Where

$$
\vec{c}=\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1 \\
2 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
8 \\
5 \\
8
\end{array}\right] .
$$

(2) We have \vec{c}, \vec{b}, A all have non-negative components or entries. Typical when have resources making products, where each product has a positive effect on the objective function $z=\vec{c}^{T} \vec{x}$.
(3) Initial dictionary

$$
\begin{aligned}
x_{3} & =8-x_{1}-2 x_{2} \\
x_{4} & =5-x_{1}-x_{2} \\
x_{5} & =8-2 x_{1}-x_{2} \\
z & =4 x_{1}+5 x_{2}
\end{aligned}
$$

Final dictionary

$$
\begin{aligned}
x_{2} & =3+x_{4}-x_{3} \\
x_{1} & =2-2 x_{4}+x_{3} \\
x_{5} & =1+3 x_{4}-x_{3} \\
z & =23-3 x_{4}-x_{3}
\end{aligned}
$$

(4) Understanding $x_{1}+x_{2} \leq 5$ as a constraint on coffee (x_{1}, x_{2} are coffee-based drinks; see notes), we guess that $z=23-3 x_{4}-x_{3}$ means that if the 5 units of coffee changes a small amount, then the utility changes by 3 (meaning 3 units of utility per unit of coffee) times the coffee change; less coffee means less utility.

[^0](5) Dual LP is minimize $8 y_{1}+5 y_{2}+8 y_{3}$ subject to $4 \leq y_{1}+y_{2}+2 y_{3}, 5 \leq$ $2 y_{1}+y_{2}+y_{3}$ and $y_{1}, y_{2}, y_{3} \geq 0$. Derivation in matrix notation:
$$
A \vec{x} \leq \vec{b} \Longrightarrow \vec{y}^{T} A \vec{x} \leq \vec{y}^{T} \vec{b}
$$
provided that $\vec{y} \geq \overrightarrow{0}$. Hence if \vec{y} is dual feasible in the sense that
$$
\vec{c}^{T} \leq \vec{y}^{T} A, \quad \text { and } \quad \vec{y} \geq \overrightarrow{0}
$$
then for any feasible \vec{x} (meaning that $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$), we always have
$$
z=z(\vec{x})=\vec{c}^{T} \vec{x} \leq \vec{y}^{T} A \vec{x} \leq \vec{y}^{T} \vec{b}
$$
i.e., the objective $z=z(\vec{x})$ is never larger than $\vec{y}^{T} \vec{b}$. Hence the dual LP is to minimize $\vec{y}^{T} \vec{b}$ subject to (1). To write this in standard form, notice that $\vec{c}^{T} \leq \vec{y}^{T} A$ is equivalent (after taking the transpose of both sides) to $-A^{T} \vec{y} \leq-\vec{c}$; hence the dual LP becomes
\[

$$
\begin{gathered}
\text { maximize }-\vec{b}^{T} \vec{y} \quad \text { subject to } \\
-A^{T} \vec{y} \leq-\vec{c}, \quad \vec{y} \geq \overrightarrow{0}
\end{gathered}
$$
\]

So in the primal LP, the roles of A, \vec{c}, \vec{b} become, in the dual LP, $-A^{T},-\vec{b},-\vec{c}$.
(6) Concretely, the dual to the LP in our first example (above) is to maximize $-8 y_{1}-5 y_{2}-8 y_{3}$ subject to $-y_{1}-y_{2}-2 y_{3} \leq-4$ and $-2 y_{1}-y_{2}-y_{3} \leq-5$.
(7) Each primal dictionary has a dual dictionary: for example, the initial dual dictionarly would be

$$
\begin{aligned}
y_{4} & =-4+y_{1}+y_{2}+2 y_{3} \\
y_{5} & =-5+2 y_{1}+y_{2}+y_{3} \\
w & =\quad-8 y_{1}-5 y_{2}-8 y_{3}
\end{aligned}
$$

This dictionary is not feasible, but is dual feasible. However, the final dictionary of the original LP has the dual dictionary

$$
\begin{aligned}
y_{2} & =3-y_{5}+2 y_{4}-3 y_{3} \\
y_{1} & =1+y_{5}-y_{4}+y_{3} \\
w & =-23-3 y_{5}-2 y_{4}-y_{3}
\end{aligned}
$$

which is feasible and dual feasible (meaning negative coefficients in the w row), and hence is also optimal.
(8) From this observation, we see that if any LP is feasible and bounded, thenbecause the simplex method always finds an optimal solution in a final dictionary that is both feasible and dual feasible - the dual LP has a corresponding feasible and dual feasible optimal dictionary, with a matching optimal objective value.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

