Proposal Talk Example: Exam Scheduling

Donald Duck, Joel Friedman, Mickey Mouse

University of British Columbia www.math.ubc.ca/~jf

UBC
 October 2017

Exam Scheduling with Conflict Minimization

Basic problem:

- 4 exam periods per day of final exams.
- Given length of exam period, minimize exam conflicts.
- Looking for sensitivity and threshold phenomena.
- Data to model UBC.

More difficult problems:

- Miminize exam conflicts (need student schedules).
- What happens if large class exams given section by section.
- What about other universities?
- Are there heuristics better than ILP solver with 45,000 students?

Models, Part 1

Basic model:

- n classes, m exam periods.
- For $i=1, \ldots, n$, and $k=1, \ldots, m$, have variable $x_{i k}=0,1$; our intention is that $x_{i k}=1$ if exam i scheduled in period $k, 0$ otherwise.
- Constraint $\forall i \in[n]$

$$
x_{i 1}+x_{i 2}+\cdots+x_{i m}=1
$$

means each class assigned to one exam period.

- No conflicts: given P set of pairs (i, j) where class i and j have common students, $\forall(i, j) \in P$ and $k \in[m]$,

$$
x_{i k}+x_{j k} \leq 1
$$

Question: is there a feasible point?

Models, Part 2

With the same n, m and variables $x_{i k}$, we allow conflicts:

- Let $y_{i j}=1$ if classes i, j are scheduled simultaneously, 0 otherwise.
- $y_{i j}$ are the minimum 0,1 -valued solution to

$$
x_{i k}+x_{j k} \leq 1+y_{i j} \quad \forall k \in[m]
$$

- Can minimize an objective function

$$
z=\sum_{i<j} \operatorname{Weight}(i, j) y_{i j}
$$

where $\operatorname{Weight}(i, j)$ is larger for (i, j) with more conflicts.

Models, Part 3

More elaborate model: same n, m and variables $x_{i k}$. Have s students, and for $\ell \in[s]$ given

$$
A_{\ell} \subset[n]
$$

i.e., the subset of classes taken by ℓ-th student.

Exam hardship: student ℓ has hardship if $\min h_{\ell}=0,1$ s.t.

$$
\sum_{j=k}^{k+3} \sum_{i \in A_{\ell}} x_{i j} \leq 2+2 h_{\ell} \quad \forall k \in[m-3]
$$

is $h_{\ell}=1$. Objective:

$$
\operatorname{Miminize} \sum_{\ell=1}^{s} h_{\ell}
$$

This is larger problem (e.g., 45,000 students for 2,000 classes), more data.

Another Slide or Two

- Maybe a slide about obtaining data.
- Maybe a slide about how parameters will be varied.
- Maybe a slide about algorithms (if you are going to try something to compete with LP/ILP/QP solvers).

