HOMEWORK \#6, MATH 441, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1) Let $\mu>0$ be a real parameter, and consider the problem of minimizing $f\left(w_{1}, w_{2}\right)$ subject to $g_{i}\left(w_{1}, w_{2}\right) \leq 0$ for $i=1, \ldots, 4$, where
$f\left(w_{1}, w_{2}\right)=100-4 \mu\left(w_{1}^{2}-2 w_{1} w_{2}+w_{2}^{2}\right), \quad g_{1}\left(w_{1}, w_{2}\right)=w_{1}+w_{2}-10$
$g_{2}\left(w_{1}, w_{2}\right)=-w_{1}-w_{2}+10, \quad g_{3}\left(w_{1}, w_{2}\right)=-w_{1}, \quad g_{4}\left(w_{1}, w_{2}\right)=-w_{2}$.
(Note the similarity to Problem 2 from Homework 4.) Answer the following questions and justify your answer:
(a) Describe the feasible region of this program as a subset of $\left(w_{1}, w_{2}\right) \in$ \mathbb{R}^{2}.
(b) For each feasible $\left(w_{1}, w_{2}\right)$, describe which of the $g_{i} \leq 0$ are active constraints. [You may draw a diagram or make a list for each subset of $i=1,2,3,4$, but you should justify your answer in words either way.]
(c) Find all KKT points of this program.
(d) Relate your findings to the solution of Problem 2 of Homework 4.

Solution:

(a) The feasible region are points of the form $\left(w_{1}, 10-w_{1}\right)$ with $0 \leq$ $w_{1} \leq 10$.
(b) g_{1} and g_{2} are active in the entire region. In addition, g_{3} is active at $(0,10)$, and g_{4} is active at $(10,0)$.
(c) We have
$\nabla f=-4 \mu\left(2 w_{1}-2 w_{2},-2 w_{1}+2 w_{2}\right)=-8 \mu\left(w_{1}-w_{2}\right)(1,-1), \quad \nabla g_{1}=(1,1)$
$\nabla g_{2}=(-1,-1), \quad \nabla g_{3}=(-1,0), \quad \nabla g_{4}=(0,-1)$.
The KKT points are therefore as follows:
(i) For $\left(w_{1}, 10-w_{1}\right)$ with $0<w_{1}<10$, i.e., when g_{1}, g_{2} are active, a point is KKT iff there are $u_{1}, u_{2} \geq 0$ such that

$$
(0,0)=\nabla f+u_{1} \nabla g_{1}+u_{2} \nabla g_{2}=-8 \mu\left(w_{1}-w_{2}\right)(1,-1)+\left(u_{1}-u_{2}\right)(1,1)
$$

This is equivalent to the two equations

$$
0=-8 \mu\left(w_{1}-w_{2}\right)+\left(u_{1}-u_{2}\right), \quad 0=-8 \mu\left(w_{1}-w_{2}\right)-\left(u_{1}-u_{2}\right)
$$

[^0]Adding the two equations we have $0=-16 \mu\left(w_{1}-w_{2}\right)$ so that $w_{1}=w_{2}=10-w_{1}$, and hence we must have $w_{1}=$ $w_{2}=5$. If $w_{1}=w_{2}=5$, then the two equations amount to $u_{1}=u_{2}$, for which there are (infinitely many) solutions with $u_{1}=u_{2} \geq 0$.
Hence for $0<w_{1}<10$, there is a single KKT point, namely $\left(w_{1}, w_{2}\right)=(5,5)$.
(ii) For $(10,0)$, i.e., when g_{1}, g_{2}, g_{4} are active, the KKT condition holds if we can find $u_{1}, u_{2}, u_{4} \geq 0$ for which
$(0,0)=\nabla f+u_{1} \nabla g_{1}+u_{2} \nabla g_{2}+u_{4} \nabla g_{4}=-80 \mu(1,-1)+\left(u_{1}-u_{2}\right)(1,1)+u_{4}(0,-1)$, which is equivalent to the two equations
$0=-80 \mu+\left(u_{1}-u_{2}\right), \quad 0=80 \mu+\left(u_{1}-u_{2}\right)-u_{4} ;$
the first equation says that $u_{1}-u_{2}=80 \mu$, and the second then is equivalent to saying that $u_{4}=80 \mu+\left(u_{1}-u_{2}\right)=$ 160μ. So $u_{4}=160 \mu \geq 0$, and we may take any $u_{2} \geq 0$ and set $u_{1}=80 \mu+u_{2}$ to get a solution to the KKT equation with $u_{1}, u_{2}, u_{4} \geq 0$.
Hence $(10,0)$ is a KKT point.
(iii) For $(0,10)$, i.e., when g_{1}, g_{2}, g_{3} are active, the KKT condition holds if we can find $u_{1}, u_{2}, u_{3} \geq 0$ for which
$(0,0)=\nabla f+u_{1} \nabla g_{1}+u_{2} \nabla g_{2}+u_{3} \nabla g_{3}=-80 \mu(-1,1)+\left(u_{1}-u_{2}\right)(1,1)+u_{3}(-1,0)$,
which is equivalent to the two equations
$0=80 \mu+\left(u_{1}-u_{2}\right)-u_{3}, \quad 0=-80 \mu+\left(u_{1}-u_{2}\right) ;$
the second equation says that $u_{1}-u_{2}=80 \mu$, and the first then is equivalent to saying that $u_{3}=80 \mu+\left(u_{1}-u_{2}\right)=$ 160μ. So $u_{3}=160 \mu \geq 0$, and we may take any $u_{2} \geq 0$ and set $u_{1}=80 \mu+u_{2}$ to get a solution to the KKT equation with $u_{1}, u_{2}, u_{3} \geq 0$.
Hence $(0,10)$ is a KKT point.
It follows that the KKT points are $(0,10),(5,5),(10,0)$.
(d) Problem 2 of Homework 4 has the same feasibility region. In this problem we are minimizing the Markowitz utility, rather than maximizing it. So in addition to the KKT point $(5,5)$ (which appears either when you maximize or minimize), the endpoints of the feasibility region, $(0,10)$ and $(10,0)$ are KKT points.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

