HOMEWORK #4, MATH 441, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You may work together on homework, but you must write up your own solutions individually. In particular, you must write your own code, spread-sheets, etc.
- (2) You must acknowledge with whom you worked (specify their gradescope.com email addresses). You must also acknowledge any sources you have used beyond the textbook and class material.
- (3) When you submit your homework to gradescope.com, you need to put the solutions to different problems on different pages; gradescope.com will ask you to identify which pages correspond to which problems.
- (1) Consider the solution (??) to the Markowitz utility of the model $R = w_1A + w_2M$ subject to $w_1, w_2 \ge 0$ and $w_1 + w_2 = 10$.
 - (a) What is w_1^* for the values $\mu = .05$, $\mu = 1$, and $\mu = 1000$?
 - (b) Explain intuitively—in terms of μ representing risk aversion—why w_1 is very close to 0 for $\mu = 1000$.
 - (c) For the analogous solution (??) for the model $R = w_1 A + w_2 B$ (subject to the same conditions), what is the value of w_1^* for the value $\mu = .05$?
 - (d) Explain intuitively—in terms of the difference between the models $w_1A + w_2M$ and $w_1A + w_2B$ —why for $\mu = .05$ the value of w_1 is 10 for one of the models and less than 10 for the other.

Solution:

- (a) Respectively, $w_1^* = 10, 5/4, 5/4000.$
- (b) With $\mu = 1000$ we are very averse to risk and hence want to invest mostly in M (which has zero variance and is therefore "without risk").
- (c) $w_1^* = (1/8)(0.05)^{-1} = 1/(.4) = 2.5.$
- (d) The return on the riskless instruments M, B are respectively 0, 9, and hence higher for B. Hence, for the same amount of risk aversion, we will spend more on B in a mix of A and B than in

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

M in a mix of A and M. Hence it makes sense that for certain values of μ we may invest everything in A and nothing in M in the optimal investment, and when we replace M by B it becomes more desirable to invest something in B.

(2) Compute the Markowitz Utility $U(w_1, w_2, \mu)$ for the portfolio $R = w_1A + w_2N$. [Note the formula $\operatorname{Corr}(A, N) = -1$ in the Section 7, and note that the formulas in Section 8 imply that

 $Var(w_1X + w_2Y) = w_1^2 Var(X) + 2w_1w_2 Cov(X, Y) + w_2^2 Var(Y) .$

Then find the optimum feasible solution for this model under the conditions $w_1, w_2 \ge 0$ and $w_1 + w_2 = 10$.

Solution: We have $\operatorname{Cov}(A, N) = \operatorname{Corr}(A, N)\sqrt{\operatorname{Var}(A)\operatorname{Var}(N)} = -4,$ and hence $\operatorname{Var}(w_1A + w_2N) = w_1^2 \operatorname{Var}(A) + 2w_1 w_2 \operatorname{Cov}(A, N) + w_2^2 \operatorname{Var}(N)$ $= w_1^2 4 - 2w_1 w_2 4 + w_2^2 4.$ Under the condition $w_2 = 10 - w_1$ we therefore have $Var(w_1A + w_2N) = w_1^2 4 - 2w_1(10 - w_1)4 + (10 - w_1)^2 4 = 16w_1^2 - 160w_1 + 400$ We also have $\overline{w_1A + w_2N} = 10w_1 + 10w_2 = 10w_1 + 10(10 - w_1) = 100.$ Hence the Markowitz utility is $U(\mu; w_1A + w_2N) = \overline{w_1A + w_2N} - \mu \operatorname{Var}(w_1A + w_2N)$ $= 100 - \mu (16w_1^2 - 160w_1 + 400).$ Differentiating in w_1 we see that the maximum is attained when $32w_1$ – $160 = 0 \text{ or } w_1 = 5.$ [This should make sense, since A, N have the same expected return, so $\overline{w_1A + w_2N} = 100$ regardless of the investment, and A + N = 20 is "riskless," and so 5A + 5N = 100 is also "riskless."]

(3) Compute the Markowitz Utility $U(w_1, w_2, \mu)$ for the portfolio $R = w_1C + w_2P$. Then find **all** optimum feasible solutions for this model under the conditions $w_1, w_2 \ge 0$ and $w_1 + w_2 = 10$.

Solution: First solution: since C = P, if $w_1 + w_2 = 10$, then $w_1C + w_2P = w_1C + w_2C = 10C$. Hence any w_1^* with $0 \le w_1^* \le 10$ gives the same (and therefore optimal) utility.

Second solution: We can also find this via computation: under the condition $w_2 = 10 - w_1$ we have:

 $\overline{w_1C + w_2P} = w_110 + w_210 = w_110 + (10 - w_1)10 = 100,$

and $\operatorname{Cov}(C, P) = \operatorname{Cov}(C, C) = 4$ (since P = C, or we can derive this using the fact that $\operatorname{Corr}(P, C) = 1$ since they are the same instrument). Hence

 $Var(w_1C + w_2P) = w_1^2 4 + 2w_1w_2 4 + w_2^2 4$ = $w_1^2 4 + 2w_1(10 - w_1) 4 + (10 - w_1)^2 4 = 400$ and hence the Markowitz utility is $100 - \mu 400$, which is independent of w_1 . Hence any w_1^* with $0 \le w_1^* \le 10$ gives the optimal utility.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

URL: http://www.math.ubc.ca/~jf