HOMEWORK \#4, MATH 441, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You may work together on homework, but you must write up your own solutions individually. In particular, you must write your own code, spreadsheets, etc.
(2) You must acknowledge with whom you worked (specify their gradescope.com email addresses). You must also acknowledge any sources you have used beyond the textbook and class material.
(3) When you submit your homework to gradescope.com, you need to put the solutions to different problems on different pages; gradescope.com will ask you to identify which pages correspond to which problems.
(1) Consider the solution (??) to the Markowitz utility of the model $R=$ $w_{1} A+w_{2} M$ subject to $w_{1}, w_{2} \geq 0$ and $w_{1}+w_{2}=10$.
(a) What is w_{1}^{*} for the values $\mu=.05, \mu=1$, and $\mu=1000$?
(b) Explain intuitively -in terms of μ representing risk aversion-why w_{1} is very close to 0 for $\mu=1000$.
(c) For the analogous solution (??) for the model $R=w_{1} A+w_{2} B$ (subject to the same conditions), what is the value of w_{1}^{*} for the value $\mu=.05$?
(d) Explain intuitively - in terms of the difference between the models $w_{1} A+w_{2} M$ and $w_{1} A+w_{2} B-$ why for $\mu=.05$ the value of w_{1} is 10 for one of the models and less than 10 for the other.

Solution:

(a) Respectively, $w_{1}^{*}=10,5 / 4,5 / 4000$.
(b) With $\mu=1000$ we are very averse to risk and hence want to invest mostly in M (which has zero variance and is therefore "without risk").
(c) $w_{1}^{*}=(1 / 8)(0.05)^{-1}=1 /(.4)=2.5$.
(d) The return on the riskless instruments M, B are respectively 0,9 , and hence higher for B. Hence, for the same amount of risk aversion, we will spend more on B in a mix of A and B than in

[^0] values of μ we may invest everything in A and nothing in M in the optimal investment, and when we replace M by B it becomes more desirable to invest something in B.
(2) Compute the Markowitz Utility $U\left(w_{1}, w_{2}, \mu\right)$ for the portfolio $R=w_{1} A+$ $w_{2} N$. [Note the formula $\operatorname{Corr}(A, N)=-1$ in the Section 7, and note that the formulas in Section 8 imply that
$\left.\operatorname{Var}\left(w_{1} X+w_{2} Y\right)=w_{1}^{2} \operatorname{Var}(X)+2 w_{1} w_{2} \operatorname{Cov}(X, Y)+w_{2}^{2} \operatorname{Var}(Y).\right]$
Then find the optimum feasible solution for this model under the conditions $w_{1}, w_{2} \geq 0$ and $w_{1}+w_{2}=10$.

Solution: We have

$$
\operatorname{Cov}(A, N)=\operatorname{Corr}(A, N) \sqrt{\operatorname{Var}(A) \operatorname{Var}(N)}=-4,
$$

and hence

$$
\begin{aligned}
\operatorname{Var}\left(w_{1} A+w_{2} N\right)= & w_{1}^{2} \operatorname{Var}(A)+2 w_{1} w_{2} \operatorname{Cov}(A, N)+w_{2}^{2} \operatorname{Var}(N) \\
& =w_{1}^{2} 4-2 w_{1} w_{2} 4+w_{2}^{2} 4
\end{aligned}
$$

Under the condition $w_{2}=10-w_{1}$ we therefore have
$\operatorname{Var}\left(w_{1} A+w_{2} N\right)=w_{1}^{2} 4-2 w_{1}\left(10-w_{1}\right) 4+\left(10-w_{1}\right)^{2} 4=16 w_{1}^{2}-160 w_{1}+400$.
We also have

$$
\overline{w_{1} A+w_{2} N}=10 w_{1}+10 w_{2}=10 w_{1}+10\left(10-w_{1}\right)=100 .
$$

Hence the Markowitz utility is

$$
\begin{gathered}
U\left(\mu ; w_{1} A+w_{2} N\right)=\overline{w_{1} A+w_{2} N}-\mu \operatorname{Var}\left(w_{1} A+w_{2} N\right) \\
=100-\mu\left(16 w_{1}^{2}-160 w_{1}+400\right) .
\end{gathered}
$$

Differentiating in w_{1} we see that the maximum is attained when $32 w_{1}-$ $160=0$ or $w_{1}=5$.
[This should make sense, since A, N have the same expected return, so $\overline{w_{1} A+w_{2} N}=100$ regardless of the investment, and $A+N=20$ is "riskless," and so $5 A+5 N=100$ is also "riskless."]
(3) Compute the Markowitz Utility $U\left(w_{1}, w_{2}, \mu\right)$ for the portfolio $R=w_{1} C+$ $w_{2} P$. Then find all optimum feasible solutions for this model under the conditions $w_{1}, w_{2} \geq 0$ and $w_{1}+w_{2}=10$.

Solution: First solution: since $C=P$, if $w_{1}+w_{2}=10$, then $w_{1} C+$ $w_{2} P=w_{1} C+w_{2} C=10 C$. Hence any w_{1}^{*} with $0 \leq w_{1}^{*} \leq 10$ gives the same (and therefore optimal) utility.

Second solution: We can also find this via computation: under the condition $w_{2}=10-w_{1}$ we have:

$$
\overline{w_{1} C+w_{2} P}=w_{1} 10+w_{2} 10=w_{1} 10+\left(10-w_{1}\right) 10=100
$$

and $\operatorname{Cov}(C, P)=\operatorname{Cov}(C, C)=4$ (since $P=C$, or we can derive this using the fact that $\operatorname{Corr}(P, C)=1$ since they are the same instrument). Hence

$$
\begin{aligned}
& \operatorname{Var}\left(w_{1} C+w_{2} P\right)=w_{1}^{2} 4+2 w_{1} w_{2} 4+w_{2}^{2} 4 \\
= & w_{1}^{2} 4+2 w_{1}\left(10-w_{1}\right) 4+\left(10-w_{1}\right)^{2} 4=400
\end{aligned}
$$

and hence the Markowitz utility is $100-\mu 400$, which is independent of w_{1}. Hence any w_{1}^{*} with $0 \leq w_{1}^{*} \leq 10$ gives the optimal utility.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

