HOMEWORK #2, MATH 441, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You may work together on homework, but you must write up your own solutions individually. In particular, you must write your own code, spread-sheets, etc.
- (2) You must acknowledge with whom you worked (specify their gradescope.com email addresses). You must also acknowledge any sources you have used beyond the textbook and class material.
- (3) When you submit your homework to gradescope.com, you need to put the solutions to different problems on different pages; gradescope.com will ask you to identify which pages correspond to which problems.
- (1) Use branch and bound to solve the integer linear program max $\vec{c}^T \vec{x}$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq 0$ and $\vec{x} \in \mathbb{Z}^2$ (i.e., x_1, x_2 must be integers)

$$\vec{c} = \begin{bmatrix} 4\\ 3 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 3\\ 1 & 1\\ 2 & 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 29.8\\ 7.3\\ 8.2 \end{bmatrix}.$$

Do not make use of the specific properties of A, \vec{b}, \vec{c} in this problem (i.e., that they all have non-negative entries/coefficients). Specifically:

- (a) Enter the corresponding LP into your LP software; you should find that the optimum solution is $x_1 = 0.9$, $x_2 = 6.4$, and z = 22.8.
- (b) Try the following branches: $x_2 \leq 6$ and $x_2 \geq 7$. If you need to explore the $x_2 \leq 6$ branch further, divide this branch into $x_2 \leq 5$ and $x_2 = 6$; if you need to explore the $x_2 \geq 7$ branch further, divide this branch into $x_2 = 7$ and $x_2 \geq 8$. (You should find that the branch $x_2 \geq 8$ is infeasible.)
- (c) When you reach a branch with x_2 fixed, branch on x_1 in a similar fashion (solve the relaxed LP, and round up and down).
- (d) Complete the branch and bound, and make a diagram of the result.

Research supported in part by an NSERC grant.

Solution: First LP solution: $(x_1, x_2, z) = (0.9, 6.4, 22.8)$. Branching according to the instructions on the homework, the branch tree that we will explore looks like this:

(a) Branch 1: $x_2 \leq 6$.

(i) Sub-branch 1.1: $x_2 = 6$.

(ii) Sub-branch 1.2: $x_2 \le 5$.

(b) Branch 2: $x_2 \ge 7$.

(i) Sub-branch 2.1: $x_2 \ge 8$.

(ii) Sub-branch 2.2: $x_2 = 7$.

Now we have to start exploring the sub-branches. Since we want to quickly find a feasible integral solution, we should explore sub-branch 1.1 ($x_2 = 6$) or 2.2: ($x_2 = 7$).

Let's begin exploring sub-branch 2.2: we solve the LP with the constraint $x_2 = 7$; the optimal solution turns out to be $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$. Hence we have two further sub-branches to explore

(a) Sub-sub-branch 2.2.1: $x_1 \ge 1$.

(b) Sub-sub-branch 2.2.2: $x_1 \leq 0$.

Solving both these LPs (since will to in order to fully explore this branch) gives the optimal solutions:

- (a) Sub-sub-branch 2.2.1: $x_1 \ge 1$. Infeasible.
- (b) Sub-sub-branch 2.2.2: $x_1 \leq 0$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 7, 21)$ (which is an integral feasible solution!).

So far our tree looks like the following:

Root: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.9, 6.4, 22.8)$

- (a) Branch 1: $x_2 \leq 6$. Not yet explored
 - (i) Sub-branch 1.1: $x_2 = 6$. Not yet explored
 - (ii) Sub-branch 1.2: $x_2 \leq 5$. Not yet explored
- (b) Branch 2: $x_2 \ge 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$

(i) Sub-branch 2.1: $x_2 \ge 8$. Not yet explored

- (ii) Sub-branch 2.2: $x_2 = 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$
 - (A) Sub-sub-branch 2.2.1: $x_1 \ge 1$. Infeasible.

(B) Sub-sub-branch 2.2.2: $x_1 \leq 0$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 7, 21)$ And the best feasible integral solution that we have found has $\mathbf{z} = 21$.

Now we try to eliminate some other branches. Solving Sub-branch 2.1 $(x_2 \ge 8)$ yields: infeasible, which completes all of branch 2.

So all that is left is to descend and search branch 1. We solve $x_2 \leq 6$ and get the solution $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.1, 6, 22.4)$. Since the *z* value here is greater than 21, which is our current best, we have to descend the tree further. We solve both LP's on sub-branches 1.1 and 1.2 which gives us:

Root: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.9, 6.4, 22.8)$

- (a) Branch 1: $x_2 \le 6$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.1, 6, 22.4)$
 - (i) Sub-branch 1.1: $x_2 = 6$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.1, 6, 22.4)$
 - (ii) Sub-branch 1.2: $x_2 \le 5$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.6, 5, 21.4)$
- (b) Branch 2: $x_2 \ge 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$

- (i) Sub-branch 2.1: $x_2 \ge 8$. Not yet explored
- (ii) Sub-branch 2.2: $x_2 = 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$
 - (A) Sub-sub-branch 2.2.1: $x_1 \ge 1$. Infeasible.
 - (B) Sub-sub-branch 2.2.2: $x_1 \leq 0$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 7, 21)$

Still nothing in branch 1, i.e., sub-branches 1.1 or 1.2, is eliminated since our best current feasible solution is 21 (from sub-sub-branch 2.2.2). Let's now descend sub-branch $x_2 = 6$, bounding on $x_1 \leq 1$ or $x_2 \geq 2$:

- (a) Sub-sub-branch 1.1.1: $x_2 = 6, x_1 \ge 2$: Infeasible
- (b) Sub-sub-branch 1.1.2: $x_2 = 6$, $x_1 \leq 1$: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (\mathbf{1}, \mathbf{6}, \mathbf{22})$, which is a **feasible integral solution** with higher objective value than the best so far.

The new value z = 22 is the best integral feasible solution so far. This solution is better than $x_1 \leq 5$, so we eliminate this sub-branch. This gives the complete branch and bound tree below:

Root: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.9, 6.4, 22.8)$

- (a) Branch 1: $x_2 \le 6$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.1, 6, 22.4)$
 - (i) Sub-branch 1.1: $x_2 = 6$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.1, 6, 22.4)$
 - (A) Sub-sub-branch 1.1.1: $x_2 = 6, x_1 \ge 2$: Infeasible
 - (B) Sub-sub-branch 1.1.2: $x_2 = 6, x_1 \le 1$: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (\mathbf{1}, \mathbf{6}, \mathbf{22}).$
 - (ii) Sub-branch 1.2: $x_2 \leq 5$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (1.6, 5, 21.4)$ which was eliminated because of z = 22 in sub-sub-branch 1.1.2.
- (b) Branch 2: $x_2 \ge 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$
 - (i) Sub-branch 2.1: $x_2 \ge 8$. Infeasible
 - (ii) Sub-branch 2.2: $x_2 = 7$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0.3, 7, 22.2)$
 - (A) Sub-sub-branch 2.2.1: $x_1 \ge 1$. Infeasible.
 - (B) Sub-sub-branch 2.2.2: $x_1 \leq 0$. $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 7, 21)$
- (2) Try the above branch and bound method on the integer program with

$$\vec{c} = \begin{bmatrix} 1\\500 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 100 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2030 \end{bmatrix}.$$

Specifically, try branch and bound by searching the possible values of x_2 based on the LP relaxation, branching on x_1 values on branches where the x_2 value has been fixed. Then do the same where you first branch on x_1 values, then x_2 values. Is there a significant difference? Explain.

Solution: The original LP has optimal solution $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 20.3, 10150)$ Say we branch on $x_2 \le 20$ and $x_2 \ge 21$. We get (a) Branch 1: $x_2 \le 20$. Optimal solution is $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (\mathbf{30}, \mathbf{20}, \mathbf{10030})$, which is integral. (b) Branch 2: $x_2 \ge 21$. Infeasible.

JOEL FRIEDMAN

Now say we branch on x_1 in the way described in the exercse. We get

- (a) Branch 1: $x_1 = 0$. Optimal: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (0, 20, 10000)$.
- (b) Branch 2: $x_1 \ge 1$. Optimal: $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (\mathbf{1}, \mathbf{20.29}, \mathbf{10146})$. (i) Sub-branch 2.1: $x_1 = 1$. Optimal $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (\mathbf{1}, \mathbf{20.29}, \mathbf{10146})$.
 - (A) Sub-sub-branch 2.1.1: $x_2 \leq 20$. Not yet explored. (B) Sub-sub-branch 2.1.1: $x_2 \leq 21$. Not yet explored.
 - (ii) Sub-branch 2.2: $x_1 \ge 2$. Optimal $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{z}) = (2, 20.28, 10146)$.
 - (A) Sub-sub-branch 2.2.1: $x_1 = 2$. Not yet explored.
 - (B) Sub-sub-branch 2.2.2: $x_1 \ge 3$. Not yet explored.

We are similarly going to have to expand the x_1 search until we get to $x_1 \ge 30$. Even if we know don't explore sub-sub-branch 2.2.1 $x_1 = 2$, sub-sub-sub-branch 2.2.2.1 $x_1 = 3$, sub-sub-sub-branch 2.2.2.2.1 $x_1 = 4$, etc., and wait for $x_1 \ge 30$, we still solve a lot of LP's that are not very interesting. The problem is that x_1 is much less influential on the objective, z, (given the constraints), and the root LP has $x_1 = 0$, which is far from the optimal $x_1 = 30$ value.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

4