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(1) Consider the linear program max ~cT~x subject to A~x ≤ ~b and ~x ≥ 0, where

~c =

[
4
3

]
, A =

1 3
1 1
2 1

 , ~b =

25
7
8

 .

You run the simplex method on this LP and obtain the final dictionary:

x1 = 1 + x4 − x5

x2 = 6 − 2x4 + x5

x3 = 6 + 5x4 − 2x5

z = 22 − 2x4 − x5

(a) Put this into an LP optimization software, and verify that your soft-
ware works on this example. Print out your LP description, and the
output of the software; for example, if you use Gurobi, then print out
the file describing the LP and the optimal solution Gurobi finds as well
as the values of the x1, x2.

Solution: See gurobi files at the end.

(b) Change the constraint x1 + x2 ≤ 7 to x1 + x2 ≤ 7.01, and run your
optimization software again. What is the new optimum z value and
optimum solution (x1, x2)?

Solution: z = 22.02, x1 = 0.99, x2 = 6.02.

How could you have predicted this from the dictionary?

Solution: Since x4 is the slack variable corresponding to the
inequality x1 + x2 ≤ 7, the change of 0.01 increases the objective
z by 0.02, corresponding to the coefficient of −2 in the optimal
dictionary line z = 22 − 2x4 − x5; similarly the x4 coefficients of
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1 and −2 in this dictionary for x1 and x2 (respectively) account
for the change of −0.01 and 0.02 in these variables new values in
the optimal solution.

(c) Same question where the constraint changes to x1 + x2 ≤ 6.99.

Solution: When we run our software we get z = 21.98,
x1 = 1.01, x2 = 5.98. Now we have that the change in the x4

constraint is −0.01, which is why we see the changes in z, x1, x2

of, respectively, −0.02, 0.01,−0.02.

(d) Same question where you leave x1 + x2 ≤ 7, but now change the first
constraint to x1 + 3x2 ≤ 25.01.

Solution: Your software should show the same optimum solu-
tion as in part (a). This is because the change of 25 to 25.01
corresponds to a change in x3, which is a constraint that is not
active in part (a), i.e., that is satisfied with strict inequality.

(2) Use your software to solve the linear program: maximize x1 subject to
x1 ≥ 4, x1 ≤ 3, and x1 ≥ 0. Print its output and make sure that your
software says that the above linear program is infeasible.

Solution: See the Gurobi file and output for this exercise.
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