HOMEWORK #3, MATH 441, FALL 2017

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2017. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You may work together on homework, but you must write up your own solutions individually. In particular, you must write your own code, spread-sheets, etc.
- (2) You must acknowledge with whom you worked (specify their gradescope.com email addresses). You must also acknowledge any sources you have used beyond the textbook and class material.
- (3) When you submit your homework to gradescope.com, you need to put the solutions to different problems on different pages; gradescope.com will ask you to identify which pages correspond to which problems.
- (1) Use LP software to find the smallest possible time from Task 1 to Task 6, given the following wait times between tasks: here Wait(i, j) is the minimum amount of time after task i is scheduled that task j is allowed to be scheduled:

i	j	$\operatorname{Wait}(i, j)$
1	2	4.1
1	3	3.7
2	4	2.9
2	5	5.1
3	4	3.7
3	5	5.6
4	6	2.4
5	6	2.2

(2) Solve the dual LP, and explain how the solution corresponds to a maximum wait time path from Task 1 to Task 6.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

Research supported in part by an NSERC grant.