March 2008 MATH 340-201 Name
Marks
[8] 1. Consider the two matrix games

$$
A_{1}=\left[\begin{array}{cc}
1 & -1 \\
-4 & 4
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
1 & -1 \\
4 & 4
\end{array}\right]
$$

Assume that A_{1} is irreducible (i.e., that every strategy is essential) and use linear algebra to find the value of the game and the equilibrium strategies. How do you know that the irreducibility assumption on A_{1} was correct (explain carefully)? Assume that A_{2} is irreducible, and try to do the same for A_{2}; how do you know that the irreducibility assumption on A_{2} was wrong (explain carefully)?

March 2008 MATH 340-201 Name Page 3 of 7 pages
[5] 2. Consider the problem: maximize x_{1} subject to $x_{1}+x_{2} \leq 5, x_{1} \geq 6, x_{1}, x_{2} \geq 0$. Write this as a linear program in standard form. Use the two-phase method, adding an auxilliary variable x_{0} to EVERY slack variable equation in the dictionary, to show that this linear program is infeasible.

March 2008 MATH 340-201 Name Page 4 of 7 pages
[6] 3. Consider the problem: maximize $x_{1}+x_{2}$ subject to $x_{1}+2 x_{2} \leq 4,2 x_{1}+x_{2} \leq 5$, and $x_{1}, x_{2} \geq 0$. Write the slack variables for this linear program, and write down the dual linear program and dual slack variables.

Check to see if the following are optimal solutions to the primal linear program using complementary slackness:
(a) $x_{1}=2, x_{2}=1 ;$
(b) $x_{1}=0, x_{2}=2$;
[2] 4. Explain why the following linear program must involve a degenerate pivot: maximize x_{1} subject to $x_{1} \leq x_{2}+x_{3}, x_{1}+x_{2}+4 x_{3} \leq 2, x_{2}+5 x_{3} \leq 10,3 x_{1}+3 x_{2}+5 x_{3} \leq 7$, $x_{1}, x_{2}, x_{3} \geq 0$.
[6] 5. Show that for all $m \times n$ matrix games, A, and stochastic \mathbf{s}, \mathbf{t} of dimension m we have

$$
\operatorname{Scream}_{\text {Alice }}((\mathbf{s}+\mathbf{t}) / 2) \geq(1 / 2) \operatorname{Scream}_{\text {Alice }}(\mathbf{s})+(1 / 2) \operatorname{Scream}_{\text {Alice }}(\mathbf{t})
$$

Evaluate each term in this formula for the game Rock-Paper-Scissors, where s represents "play Rock always" and t represents "play Scissors always." Does equality hold? [This is standard Rock-Paper-Scissors: rock beats scissors, scissors beats paper, paper beats rock, and each win pays one unit to the winner.]

March 2008 MATH 340-201 Name Page 6 of 7 pages

March 2008 MATH 340-201 Name
Page 7 of 7 pages

The End

Be sure that this examination has 7 pages including this cover

The University of British Columbia
Midterm Examinations - March 2008

Mathematics 340-201

Closed book examination
Time: 50 minutes

Name \qquad Signature \qquad

Student Number

\qquad

Instructor's Name

\qquad
Section Number \qquad

Special Instructions:

Calculators, notes, or other aids may not be used. Answer questions on the exam.

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS card upon request.
2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
3. Smoking is not permitted during examinations.

1		8
2		5
3		6
4		2
5		6
Total		27

