Marks
[8] 1. Consider the matrix game

$$
A=\left[\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right]
$$

For each matrix find (1) the value of the game "Alice Announces," (2) the value of the game "Betty Announces," (3) the duality gap in the "Announce" games, (4) the value and equilibrium strategies of the "Scream" games.

Answer: The value of Alice Announces is obtained by taking the minimum in each row, namely -2 for row one and -3 for row two, and taking the maximum; hence this value is -2 . The value of Betty Announces is the minimum of the maximum values in each column, i.e., the minimum of 1 and 4, namely 1. The duality gap is the difference between the announce games, namely $1-(-2)=3$. For the scream game, we therefore know we'll have a mixed strategy. So we solve

$$
\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right]=\left[\begin{array}{ll}
v & v
\end{array}\right], \quad x_{1}+x_{2}=1
$$

to get Alice's equilibrium of $x_{1}=7 / 10$ and $x_{2}=3 / 10$, and the game value of $v=-2 / 10$. Similarly we solve

$$
\left[\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
w \\
w
\end{array}\right], \quad y_{1}+y_{2}=1
$$

to get Betty's equilibrium of $y_{1}=6 / 10$ and $y_{2}=4 / 10$, and game value (again) of $w=-2 / 10$.
[8] 2. Consider the problem: maximize $x_{1}+x_{2}$ subject to $x_{1} \leq 5, x_{1}+x_{2} \geq 2, x_{1}, x_{2} \geq$ 0 . Write this as a linear program in standard form. Use the two-phase method, adding an auxilliary variable x_{0} to EVERY slack variable equation in the dictionary, to solve this LP. Use the smallest subscript rule to break any ties for entering or leaving variables.

Answer: Standard form would be: maximize $x_{1}+x_{2}$ subject to $x_{1} \leq 5,-x_{1}-x_{2} \leq$ $-2, x_{1}, x_{2} \geq 0$. We get dictionaries:

$$
\begin{array}{lll}
x_{3}=5-x_{1}+x_{0} & x_{3}=7-2 x_{1}-x_{2}+x_{4} & x_{3}=3+2 x_{0}+x_{2}-x_{4} \\
x_{4}=-2+x_{1}+x_{2}+x_{0} & x_{0}=2-x_{1}-x_{2}+x_{4} & x_{1}=2-x_{0}-x_{2}+x_{4} \\
x_{0} \text { enters, } x_{4} \text { leaves } & x_{1} \text { enters, } x_{0} \text { leaves } &
\end{array}
$$

(Note that we have omitted the objective $w=-x_{0}$ in the above, since it can be read off from the x_{0} line.) Now we erase the x_{0} 's, bring in the old objective, z, and continue pivoting:

$$
\begin{array}{ll}
x_{3}=3+x_{2}-x_{4} & x_{4}=3+x_{2}-x_{3} \\
x_{1}=2-x_{2}+x_{4} & x_{1}=5-x_{3} \\
z=2+x_{4} & z=5+x_{2}-x_{3} \\
x_{4} \text { enters, } x_{3} \text { leaves } & \text { Done-unbounded, }
\end{array}
$$

since x_{2} enters but nothing leaves.
[8] 3. Consider our usual LP: maximize $4 x_{1}+5 x_{2}$ subject to $x_{1}+2 x_{2} \leq 8, x_{1}+x_{2} \leq 5$, $2 x_{1}+x_{2} \leq 8$, and $x_{1}, x_{2} \geq 0$. Write the slack variables for this linear program, and write down the dual linear program and dual slack variables.

Answer: See Final 2000, Problem 7, for the slack variables (dictionaries), dual linear program, and correspondences. The slack variables are

$$
x_{3}=8-x_{1}-2 x_{2}, \quad x_{4}=5-x_{1}-x_{2}, \quad x_{5}=8-2 x_{1}-x_{2}
$$

for the primal, and

$$
y_{4}=-4+y_{1}+y_{2}+2 y_{3}, \quad y_{5}=-5+2 y_{1}+y_{2}+y_{3}
$$

for the dual.

Check to see if the following are optimal solutions to the primal linear program using complementary slackness:
(a) $x_{1}=4, x_{2}=0$;

Answer: This gives $x_{3}=4, x_{4}=1, x_{5}=0$. Since $x_{3} \neq 0$, we have $y_{1}=0$. Since $x_{4} \neq 0$, we have $y_{2}=0$. Since $x_{1} \neq 0$ we have $y_{4}=0$. This gives

$$
y_{4}=0=-4+2 y_{3}, \quad y_{5}=-5+y_{3},
$$

which gives $y_{3}=2$ and $y_{5}=-3$. Since $y_{5}<0$, this solution is not optimal.
(b) $x_{1}=0, x_{2}=4$;

Answer: This gives $x_{3}=0, x_{4}, x_{5}>0$ and hence $y_{2}=y_{3}=y_{5}=0$, giving

$$
y_{5}=0=-5+2 y_{1}, \quad y_{4}=-4+y_{1},
$$

so $y_{1}=5 / 2$ and $y_{4}=-3 / 2$. Since $y_{4}<0$, this solution is impossible.
[8] 4. Consider the LP: maximize x_{1} subject to $x_{1} \leq x_{2}, x_{2} \leq x_{3}, x_{3} \leq 4$, and $x_{1}, x_{2}, x_{3} \geq 0$. Show how the perturbation method ensures that you increase z with every pivot. Does it matter (to the pivots that you make) whether you take $\epsilon_{1} \gg \epsilon_{2} \gg \epsilon_{3}$ or take the reverse?

Answer:

$$
\begin{aligned}
& x_{4}=\epsilon_{1}-x_{1}+x_{2} \\
& x_{5}=\epsilon_{2}-x_{2}+x_{3} \\
& x_{6}=4+\epsilon_{3}-x_{3} \\
& z=x_{1} \\
& x_{1} \text { enters, } x_{4} \text { leaves }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\epsilon_{1}-x_{4}+x_{2} \\
& x_{5}=\epsilon_{2}-x_{2}+x_{3} \\
& x_{6}=4+\epsilon_{3}-x_{3} \\
& z=\epsilon_{1}-x_{4}+x_{2} \\
& x_{2} \text { enters, } x_{5} \text { leaves }
\end{aligned}
$$

$$
\begin{array}{ll}
x_{1}=\epsilon_{1}+\epsilon_{2}-x_{4}-x_{5}+x_{3} & x_{1}=4+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-x_{4}-x_{5}-x_{6} \\
x_{2}=\epsilon_{2}-x_{5}+x_{3} & x_{2}=4+\epsilon_{2}+\epsilon_{3}-x_{5}-x_{6} \\
x_{6}=4+\epsilon_{3}-x_{3} & x_{3}=4+\epsilon_{3}-x_{6} \\
z=\epsilon_{1}+\epsilon_{2}-x_{4}-x_{5}+x_{3} & z=4+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}-x_{4}-x_{5}-x_{6} \\
x_{3} \text { enters, } x_{6} \text { leaves } & \text { Done! }
\end{array}
$$

So the z value increases from 0 to ϵ_{1} to $\epsilon_{1}+\epsilon_{2}$ to $4+\epsilon_{1}+\epsilon_{2}+\epsilon_{3}$, always increasing (at least "infinitesimally"). Since our pivoting never involved a comparison of any of the ϵ_{i} 's to one another, the dictionaries will be the same whatever their ordering of magnitude.

March 2010 MATH 340-201 Name Page 6 of 7 pages

March 2010 MATH 340-201 Name
Page 7 of 7 pages

The End

Be sure that this examination has 7 pages including this cover

The University of British Columbia

Midterm Examinations - March 2010
Mathematics 340-201

Closed book examination
Time: 60 minutes

Name \qquad Signature \qquad

Student Number

\qquad

Instructor's Name

\qquad
Section Number \qquad

Special Instructions:

THIS EXAM IS TWO-SIDED! You will be given a note sheet. Calculators, other notes, or other aids may not be used. Answer questions on the exam.

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS card upon request.
2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
3. Smoking is not permitted during examinations.

1		8
2		8
3		8
4		8
Total		32

