Midterm

[40%] 1. Use the two-phase method to solve

maximize
$$x_1 + 2x_2$$
, subject to $x_1, x_2 \ge 0$ and
 $-x_1 - x_2 \le -2$
 $-x_1 \le -1$

Choose entering and leaving variables according to Anstee's rule, i.e. the largest coefficient rule with ties broken by taking the variable with the smallest subscript.

[30%] 2. Consider our distinguished LP

maximize
$$4x_1 + 5x_2$$
, subject to $x_1, x_2 \ge 0$ and
 $x_1 + x_2 \le 5$
 $x_1 + 2x_2 \le 8$
 $2x_1 + x_2 \le 8$

An expert on beverage makers tells you that she believes $x^* = (2,3)$ is an optimal solution. Use complementary slackness to find the predicted dual optimal solution and to demonstrate that $x^* = (2,3)$ is indeed optimal.

[30%] 3. Consider the LP

maximize
$$x_1 + 2x_2$$
, subject to $x_1, x_2 \ge 0$ and
 $x_1 + 3x_2 \le 0$
 $x_1 + x_2 \le 0$

Illustrate the perturbation method discussed in class on this LP; i.e. solve this LP with the simplex method, using the perturbation method and Anstee's rule to choose the entering and leaving variables. Make sure you begin adding ϵ to the first dictionary equation and ϵ^2 to the second (not vice versa; don't interchange the inequalities!).