Midterm

[40\%] 1. Use the two-phase method to solve

$$
\begin{gathered}
\operatorname{maximize} \quad x_{1}+2 x_{2}, \quad \text { subject to } x_{1}, x_{2} \geq 0 \text { and } \\
-x_{1}-x_{2} \leq-2 \\
-x_{1} \leq-1
\end{gathered}
$$

Choose entering and leaving variables according to Anstee's rule, i.e. the largest coefficient rule with ties broken by taking the variable with the smallest subscript.
[30\%] 2. Consider our distinguished LP

$$
\begin{gathered}
\text { maximize } \\
4 x_{1}+5 x_{2}, \quad \text { subject to } x_{1}, x_{2} \geq 0 \text { and } \\
x_{1}+x_{2} \leq 5 \\
x_{1}+2 x_{2} \leq 8 \\
2 x_{1}+x_{2} \leq 8
\end{gathered}
$$

An expert on beverage makers tells you that she believes $x^{*}=(2,3)$ is an optimal solution. Use complementary slackness to find the predicted dual optimal solution and to demonstrate that $x^{*}=(2,3)$ is indeed optimal.
[30\%] 3. Consider the LP

$$
\begin{gathered}
\text { maximize } \quad x_{1}+2 x_{2}, \quad \text { subject to } x_{1}, x_{2} \geq 0 \text { and } \\
x_{1}+3 x_{2} \leq 0 \\
x_{1}+x_{2} \leq 0
\end{gathered}
$$

Illustrate the perturbation method discussed in class on this LP; i.e. solve this LP with the simplex method, using the perturbation method and Anstee's rule to choose the entering and leaving variables. Make sure you begin adding ϵ to the first dictionary equation and ϵ^{2} to the second (not vice versa; don't interchange the inequalities!).

