Marks
[15] 1. Use the two-phase method to solve

$$
\begin{gathered}
\operatorname{maximize}-2 x_{1}-x_{2} \quad \text { subject to } x_{1}, x_{2} \geq 0 \\
x_{1}-x_{2} \leq-1 \\
-x_{1}-x_{2} \leq-3
\end{gathered}
$$

Use the largest coefficient rule to choose the entering variable, breaking ties by choosing the smallest subscript. Clearly state which variable enters and which leaves on each pivot, and what your final dictionary means in terms of the original problem.
[15] 2. Consider the problem

$$
\begin{array}{cccl}
\operatorname{maximize} & 3 x_{1}+x_{2}+x_{3} & \text { subject to } & x_{1}, x_{2}, x_{3}, x_{4} \geq 0, \\
x_{1}+x_{2} & +x_{3} & +x_{4} & \leq 6 \\
x_{1} & -x_{2} & & +2 x_{4} \\
x_{1} & & +x_{3} & \leq 2, \\
&
\end{array}
$$

Confirm that $x_{1}^{*}=2, x_{2}^{*}=4, x_{3}^{*}=0$ and $x_{4}^{*}=0$ is an optimal solution to the above LP using complementary slackness. Carefully state every condition that you are verifying; for each equation you write down for a hypothetical dual optimal solution, carefully indicate where it comes from.
[20] 3. Consider the problem

$$
\begin{gathered}
\operatorname{maximize} \quad 3 x_{1}+2 x_{2}+4 x_{3} \quad \text { subject to } x_{1}, x_{2}, x_{3} \geq 0 \\
x_{1}+x_{2} \quad+2 x_{3} \leq 4 \\
2 x_{1} \quad+3 x_{3} \leq 5 \\
2 x_{1}+x_{2} \quad+3 x_{3} \leq 7
\end{gathered}
$$

Solve this problem using the revised simplex method as described in class (in particular, do not compute B^{-1} explicitly; instead, use the eta factorization). Use the smallest subscript rule (not the largest coefficient rule!) to select your entering and leaving variables.
[30] 4. Consider the problem

$$
\begin{gathered}
\operatorname{maximize} c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4} \quad \text { subject to } x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
x_{1}+2 x_{2}+3 x_{3} \quad+x_{4} \leq b_{1} \\
x_{1} \quad+x_{2}+2 x_{3} \quad+3 x_{4} \leq b_{2}
\end{gathered}
$$

Dec., 1997 MATH 340-101 Name
where

$$
c_{1}=5, \quad c_{2}=6, \quad c_{3}=9, \quad c_{4}=8, \quad b_{1}=5, \quad b_{2}=3
$$

This optimal dictionary and B^{-1} (as in the revised simplex method) for this problem is

$$
\begin{array}{cccccc}
x_{1} & =1 & -x_{3} & -5 x_{4} & +x_{5} & -2 x_{6}, \\
x_{2} & =2 & -x_{3} & +2 x_{4} & -x_{5} & +x_{6}, \\
z & =17 & -2 x_{3} & -5 x_{4} & -x_{5} & -4 x_{6},
\end{array} \quad B^{-1}=\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]
$$

[5](a) If we let c_{1} be arbitrary (all other c 's and b 's fixed as above), for what range of values of c_{1} is this dictionary (adjusted for the change in c_{1}) still optimal?
[5](b) If we let b_{2} be arbitrary (all other c 's and b 's fixed as above), for what range of values of b_{2} is this dictionary (adjusted for the change in b_{2}) still optimal?
[5](c) Let us take the original problem with $b_{2}=7$. Form a new (not necessarily feasible) dictionary based on incorporating this change into the old optimal dictionary. Perform one pivot to reach a new optimal dictionary. What is the new optimal solution?
[5](d) Now we add the constraint $3 x_{1}+4 x_{2}+6 x_{3}+4 x_{4} \leq 10$ to the original problem. Form a new (not necessarily feasible) dictionary based on adding this constraint to the old optimal dictionary. Perform one pivot to reach a new optimal dictionary. What is the new optimal solution?
[10](e) Now $b_{2}=t$ becomes a parameter. Solve the resulting LP for all real values of t, and make a plot of $z^{*}(t)$.
[20] 5. Consider the problem

$$
\operatorname{maximize} 2 x_{1}+x_{2} \quad \text { s.t. } x_{1}+x_{2} \leq 3, \quad x_{1}, x_{2} \geq 0 .
$$

Write down primal and dual dictionaries for this problem, with the dual variables relabelled so that the i-th primal variable corresponds to the i-th relabelled dual variable under complementary slackness. Use the Lemke-Howson algorithm to solve this problem. Clearly state which variable enters and which variable leaves every dictionary, and state why they have been chosen to enter and leave.

Formulae

The following formulae may be of use. They will not be explained; you are assumed to understand what they mean and to what they refer.

$$
\begin{gathered}
x_{B}=\begin{array}{c}
B^{-1} b
\end{array} \quad-B^{-1} A_{N} x_{N} \\
z=\quad c_{B} B^{-1} b \\
y=\left(c_{N}-c_{B} B^{-1} A_{N}\right) x_{N} \\
y=c_{B} B^{-1}, \quad y B=c_{B}, \quad d=B^{-1} a, \quad B d=a, \quad x_{B}^{*}-t d
\end{gathered}
$$

The End

Be sure that this examination has 3 pages including this cover

The University of British Columbia
Final Examinations - Dec., 1997

Mathematics 340-101

Closed book examination
Time: $2 \frac{1}{2}$ hours

Name \qquad

Student Number

\qquad

Instructor's Name

\qquad

Section Number

\qquad

Special Instructions:

Candidates may not use any notes or calculators. A list of formulae is provided at the end of this exam. Answer questions in the booklets provided.

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS card upon request.
2. Read and observe the following rules:

No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination. Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Making use of any books, papers or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates. The plea of accident or forgetfulness shall not be received.
3. Smoking is not permitted during examinations.

1		15
2		15
3		20
4		30
5		20
Total		100

