Math 340 Note Sheet for Midterm, Fall 2014

$$
\text { ValueAliceAnnouncesPure }(A)=\max _{i} \text { MinEntry of } i \text {-th row of } A=\max _{i} \min _{j} a_{i j}
$$

ValueBettyAliceAnnouncesPure $(A)=\min _{j}$ MinEntry of j-th column of $A=\min _{j} \max _{i} a_{i j}$
DualityGap $=($ ValueBettyAnnouncesPure $)-($ ValueAliceAnnouncesPure $)$
The value of Alice announces a mixed strategy is

$$
\min _{\vec{p} \text { stoch }} \operatorname{MinEntry}\left(\vec{p}^{T} A\right)
$$

Is given by LP

$$
\begin{gathered}
\max v \quad \text { s.t. } \quad \vec{p}^{T} A \geq\left[\begin{array}{lll}
v & v \ldots v
\end{array},\right. \\
p_{1}+\cdots+p_{m}=1, \quad p_{1}, p_{2}, \ldots, p_{m} \geq 0
\end{gathered}
$$

If all entries of A are positive this is equivalent to

$$
\begin{gathered}
\max v \quad \text { s.t. } \quad \vec{p}^{T} A \geq\left[\begin{array}{l}
v \\
v
\end{array} . v\right] \\
p_{1}+\cdots+p_{m} \leq 1, \quad v, p_{1}, p_{2}, \ldots, p_{m} \geq 0
\end{gathered}
$$

For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad \text { gives } \quad v \leq p_{1}+3 p_{2}, \quad v \leq 2 p_{1}+4 p_{2}, \quad \text { etc. }
$$

If A is $m \times n$ and $n<m$, then we know that there is an optimum strategy where at most n of p_{1}, \ldots, p_{m} are zero.

If A is a 2×2 matrix, then either (1) the duality gap is zero, or (2) Alice and Betty have mixed strategies where the values are balanced, e.g.,

$$
\vec{p}^{T} A=\left[\begin{array}{ll}
v & v
\end{array}\right]
$$

for Alice.
For any stochastic \vec{p} and \vec{q} we have

$$
\operatorname{MinEntry}\left(\vec{p}^{\mathrm{T}} A\right) \leq \operatorname{MaxEntry}(A \vec{q})
$$

and if these are equal then this common value is the value of (the mixed strategy games of A).

LP standard form: maximize $\vec{c} \cdot \vec{x}$, subject to $A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$.
Unbounded LP: A variable enters, but nothing leaves.
2-phase method: (1) introduce x_{0} on right, (2) pivot x_{0} into the basis for a feasible dictionary, and try to maximize $w=-x_{0}$, (3) if w reaches 0 , pivot x_{0} out of dictionary and eliminate all x_{0}; e.g.,

$$
\begin{aligned}
& x_{4}=-7+\cdots+x_{0} \\
& x_{9}=-8+\cdots+x_{0}
\end{aligned} \quad x_{0} \text { enters, } x_{9} \text { leaves }
$$

Degenerate pivots: say x_{5} enters, and have $x_{3}=0+x_{2}-2 x_{5}+\cdots$ Then x_{3} cannot tolerate any positive x_{5} value, and leaves without changing the basic feasible solution (and z value). Degenerate pivots not necessarily bad, but cycling can only occur when all pivots in the cycle are degenerate.

Perturbation method: Add ϵ_{1} to first inequality, ϵ_{2} to second inequality, etc., $1 \gg$ $\epsilon_{1} \gg \epsilon_{2} \gg \cdots$. Never has a degenerate pivot (wrt the ϵ_{i} 's), since dictionary pivots represent invertible linear transformations (which can't have a row of zeros). In more detail, we have

$$
\vec{x}_{B}=A_{B}^{-1}\left(\vec{b}+\vec{\epsilon}-A_{N} \vec{x}_{N}\right)
$$

and since A_{B} is the inverse of a matrix, it cannot have a row of all 0 's, and hence each entry of $A_{B}^{-1} \vec{\epsilon}$ is nonzero.

