Math 340 Note Sheet for the Final Exam, Fall 2014

ValueAliceAnnouncesPure $(A)=\max _{i}$ MinEntry of i-th row of $A=\max _{i} \min _{j} a_{i j}$
ValueBettyAliceAnnouncesPure $(A)=\min _{j}$ MaxEntry of j-th column of $A=\min _{j} \max _{i} a_{i j}$
DualityGap $=($ ValueBettyAnnouncesPure $)-($ ValueAliceAnnouncesPure $)$
The value of Alice announces a mixed strategy is

$$
\max _{\vec{p} \text { stoch }} \operatorname{MinEntry}\left(\vec{p}^{T} A\right)
$$

Is given by LP

$$
\begin{gathered}
\max v \quad \text { s.t. } \quad \vec{p}^{T} A \geq\left[\begin{array}{ll}
v & v \ldots v
\end{array}\right] \\
p_{1}+\cdots+p_{m}=1, \quad p_{1}, p_{2}, \ldots, p_{m} \geq 0
\end{gathered}
$$

If all entries of A are positive this is equivalent to

$$
\begin{gathered}
\max v \quad \text { s.t. } \quad \vec{p}^{T} A \geq\left[\begin{array}{l}
v \\
\\
\left.p_{1}+\cdots+v\right] \\
p_{m} \leq 1, \quad v, p_{1}, p_{2}, \ldots, p_{m} \geq 0
\end{array} .\right.
\end{gathered}
$$

For example,

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad \text { gives } \quad v \leq p_{1}+3 p_{2}, \quad v \leq 2 p_{1}+4 p_{2}, \quad \text { etc. }
$$

If A is $m \times n$ and $n<m$, then we know that there is an optimum strategy where at most n of p_{1}, \ldots, p_{m} are nonzero.

If A is a 2×2 matrix, then either (1) the duality gap is zero, or (2) Alice and Betty have mixed strategies where the values are balanced, e.g.,

$$
\vec{p}^{T} A=\left[\begin{array}{ll}
v & v
\end{array}\right]
$$

for Alice.
For any stochastic \vec{p} and \vec{q} we have

$$
\operatorname{MinEntry}\left(\vec{p}^{\mathrm{T}} A\right) \leq \operatorname{MaxEntry}(A \vec{q})
$$

and if these are equal then this common value is the value of (the mixed strategy games of A).

LP standard form: maximize $\vec{c} \cdot \vec{x}$, subject to $A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$.
Unbounded LP: A variable enters, but nothing leaves.
2-phase method: (1) introduce x_{0} on right, (2) pivot x_{0} into the basis for a feasible dictionary, and try to maximize $w=-x_{0}$, (3) if w reaches 0 , pivot x_{0} out of dictionary and eliminate all x_{0}; e.g.,

$$
\begin{aligned}
& x_{4}=-7+\cdots+x_{0} \\
& x_{9}=-8+\cdots+x_{0}
\end{aligned} \quad x_{0} \text { enters, } x_{9} \text { leaves }
$$

Degenerate pivots: say x_{5} enters, and have $x_{3}=0+x_{2}-2 x_{5}+\cdots$ Then x_{3} cannot tolerate any positive x_{5} value, and leaves without changing the basic feasible solution (and z value). Degenerate pivots not necessarily bad, but cycling can only occur when all pivots in the cycle are degenerate.

Perturbation method: Add ϵ_{1} to first inequality, ϵ_{2} to second inequality, etc., $1 \gg$ $\epsilon_{1} \gg \epsilon_{2} \gg \cdots$. Never has a degenerate pivot (wrt the ϵ_{i} 's), since dictionary pivots represent invertible linear transformations (which can't have a row of zeros). In more detail, we have

$$
\vec{x}_{B}=A_{B}^{-1}\left(\vec{b}+\vec{\epsilon}-A_{N} \vec{x}_{N}\right)
$$

and since A_{B} is the inverse of a matrix, it cannot have a row of all 0 's, and hence each entry of $A_{B}^{-1} \vec{\epsilon}$ is nonzero.

The formulas for simplex method dictionaries (in standard form) is

$$
\begin{aligned}
\vec{x}_{B} & =A_{B}^{-1} \vec{b}-A_{B}^{-1} A_{N} \vec{x}_{N} \\
\zeta & =\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} \vec{b}+\left(\vec{c}_{N}^{\mathrm{T}}-\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}\right) \vec{x}_{N}
\end{aligned}
$$

In the computation above, we compute $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}$ by first computing $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1}$, and then multiplying the result (a row vector) times A_{N}; it would be more expensive to first compute $A_{B}^{-1} A_{N}$.

For the A_{B}^{-1} of the $i-1$-th and i-th dictionaries we have

$$
A_{B_{i}}^{-1}=E_{i} A_{B_{i-1}}^{-1}
$$

where E_{i} is an eta matrix, equal to the identity except in one column. This formula can be applied recursively to get

$$
A_{B_{i+k}}^{-1}=E_{i+k} E_{i+k-1} \cdots E_{i} A_{B_{i-1}}^{-1}
$$

it turns out that due to the cost in FLOPS, the eta it is best to use k up to roughly between \sqrt{m} and m (if there are m basic variables); there are also roundoff error issues that are not analyzed in Vanderbei.

For any basis, B, A_{B} must be invertible, and hence there can be no linear dependence between rows of A_{B} (or between its columns).

Let the b-th row in a matrix game be $\vec{f}(b)$. If \vec{f} is a convex function (i.e., concave up), then Alice has an optimal strategy that is some combination of the smallest and largest values of b (i.e., the top and bottom rows). If \vec{f} is concave down, then Alice has an optimal strategy this is some combination of two adjacent rows. (These combinations can be 100% of one row in certain cases.)

The dual to (1) maximize $\vec{c} \cdot \vec{x}$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$ is (2) maximize $-\vec{b} \cdot \vec{y}$ subject to $A^{\mathrm{T}} \vec{y} \geq \vec{c}$ and $\vec{y} \geq 0$. If both these LP's are feasible, then for \vec{x}, \vec{y} feasible the following are equivalent: (1) \vec{x}, \vec{y} are optimal solutions; (2) $\vec{c} \cdot \vec{x}=\vec{b} \cdot \vec{y}$ (Strong Duality Theorem); (3) $x_{i} z_{i}=0$ for all i and $y_{j} w_{j}=0$ for all j, where the z_{i} 's are the dual slack variables and the w_{j} 's are the primal slack variables (Complementary Slackness). Furthermore, for any \vec{x}, \vec{y} feasible we have $\vec{c} \cdot \vec{x} \leq \vec{b} \cdot \vec{y}$ (Weak Duality Theorem).

