Marks

[10] 1. Consider the problem: maximize x_1 subject to $x_1 \ge 4$, $x_1 \ge 8$, $x_1 \ge 0$. Write this as a linear program in standard form. Use the two-phase method, adding an auxilliary variable x_0 to EVERY slack variable equation in the dictionary, to solve this LP. Use the smallest subscript rule to break any ties for entering or leaving variables.

Answer: In standard form this is

$$\max x_1, \quad \text{subject to} \\ -x_1 \le -4 \\ -x_1 \le -8 \\ x_1 \ge 0$$

This gives rise to an initial dictionary:

$$\zeta = x_1$$
$$w_1 = -4 + x_1$$
$$w_2 = -8 + x_1$$

Due to the negative constants in the constraints, we use the two phase method, beginning by adding x_0 as non-basic and modifying the objective:

$$\zeta = -x_0$$

$$w_1 = -4 + x_1 + x_0$$

$$w_2 = -8 + x_1 + x_0$$

We have x_0 enter and choose the leaving variable so that the dictionary becomes feasible, namely w_2 leaves:

$$\zeta = -8 + x_1 - w_2$$

$$w_1 = 4 + w_2$$

$$x_0 = 8 - x_1 + w_2$$

So x_1 enters and x_0 leaves:

$$\begin{aligned} \zeta &= x_0 \\ w_1 &= 4 + \dots + w_2 \\ x_1 &= 8 - x_0 + w_2 \end{aligned}$$

This gives us a feasible dictionary with x_0 non-basic. So we eliminate the x_0 to get the feasible dictionary (and use our original objective $\zeta = x_1$), to start the second phase:

$$\zeta = 8 + w_2$$
$$w_1 = 4 + w_2$$
$$x_1 = 8 + w_2$$

So w_2 enters and nothing leaves (i.e., w_2 is unconstrained), so w_2 , and hence ζ , can increase without bound. Hence this linear program is unbounded.

- [20] **2.** (4 points for each part) Briefly justify your answers:
 - (a) Find the value of "Alice announces a pure strategy" and "Betty announces a pure strategy" for the matrix game:

$$A = \begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix}$$

What do you conclude about the value of the mixed strategy games?

Answer: If Alice chooses the top row, Betty picks column 1, for a payout of 1; if Alice chooses the bottom row, Betty picks column 2, for a payout of 3. Hence Alice picks row 2, and the value of "Alice announces a pure strategy" is 3.

Similarly Betty picks column two so that Alice gets a payout of 3 in "Betty announces a pure strategy" (if Betty picks column one then Alice gets a payout of 4).

Since the duality gap is 0, the value of the mixed strategy games is also 3.

(b) In the matrix game

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 3 & 1 \\ 5 & 2 & 1 \end{bmatrix}$$

someone claims that Alice's optimal mixed strategy is $[1/2 \ 1/2 \ 0]$ and that Betty's is $[1/3 \ 1/3 \ 1/3]$. Make a quick calculation (without using the simplex method) to determine whether or not this is true; explain why your quick calculation works.

Answer: We have

$$[1/2 \ 1/2 \ 0]A = [5/2 \ 5/2 \ 5/2],$$

whose minimum entry is 5/2. Also

$$A\begin{bmatrix} 1/3\\1/3\\1/3\end{bmatrix} = \begin{bmatrix} 7/3\\8/3\\8/3\end{bmatrix},$$

whose maximum entry is 8/3.

So when Alice plays the mixed strategy $[1/2 \ 1/2 \ 0]$, Alice's payout is 5/2, and when Betty plays $[1/3 \ 1/3 \ 1/3]$, the payout to Alice is 8/3. Since 5/2 and 8/3 are different, we are not at optimality (at least one strategy is not optimal).

Some people made conclusions about Alice's strategy being optimal because $[1/2 \ 1/2 \ 0]A$ is balanced. This is not necessarily true. For example, in part (a) we have that Alice's optimal strategy is $[0 \ 1]$, and yet

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \end{bmatrix},$$

which is not balanced. Also you should be careful to note that what is true for 2×2 matrix games is not always true for larger games; for example, a 3×3 matrix game can be reducible without having one row (or column) dominated by another.

(c) Let A be a 100×2 matrix game. Argue that Alice has an optimal mixed strategy where she plays at most two rows.

Answer: By adding a sufficiently large positive integer to each entry of A, we get an equivalent game where A has all strictly positive entries. In this case the linear program for Alice's optimal strategy, \vec{p} , will be to maximize v (which will be strictly positive), subject to the three constraints

$$\vec{p}^{\mathrm{T}}A \ge [v \ v], \quad p_1 + \dots + p_{100} \le 1$$

[the fact that it suffices to write ≤ 1 was a homework problem and explained in class, and is due to the fact that A's entries are strictly positive, so to maximize v, the vector \vec{p} will never be taken to have a sum less than 1].

It follows that we can run the simplex on the above linear program, which has three basic variables. At the final dictionary, v will have a strictly positive value, so v will be in the basis as well as at most two of the p_i . Hence at least 98 of the p_i will be non-basic, and hence equal to zero at optimality.

$$(d)$$
 and (e)

Answer: There are a number of possible answers; for part (d) you have to make sure that all possible entering variables give a degenerate pivot; part (e) requires you to show a second degenerate pivot, which cannot be determined from the initial dictionary without some argument.

One type example is to maximize x_1 subject to $x_1 \leq x_2$ and $x_2 \leq x_3$ (and $x_1, x_2, x_3 \geq 0$). The dictionary looks like

$$\zeta = x_1, \quad w_1 = x_2 - x_1, \quad w_2 = x_3 - x_2.$$

So x_1 must enter, and hence w_1 leaves, a degenerate pivot. The next dictionary is

$$\zeta = x_2 - w_1, \quad x_1 = x_2 - w_1, \quad w_2 = x_3 - x_2,$$

and we note that the last line remains the same (regardless of the pivot). So x_2 must enter, and w_2 must leave, another degenerate pivot. Note that if we replace the objective $\zeta = x_1$ with $\zeta = x_1 + x_2 + x_3$ (or something like that), then some possible first pivots are not degenerate.

A variant of the above is something like

$$\zeta = x_1 + x_2, \quad w_1 = -x_1, \quad w_2 = -x_2.$$

Continued on page 6

Here either x_1 or x_2 can enter, but the slack variables w_1 and w_2 work independently on x_1 and x_2 . So if x_1 enters, then w_1 leaves, giving a new dictionary

$$\zeta = -w_1 + x_2, \quad x_1 = -w_1, \quad w_2 = -x_2.$$

Then x_2 enters with a degenerate pivot. On the other hand, if x_2 enters first then we get the dictionary

$$\zeta = x_1 - w_2, \quad w_1 = -x_1, \quad x_2 = -w_2,$$

and again the second pivot (x_1 enters, w_1 leaves) is degenerate.

Another type of example comes from game theory linear programs, such as

$$\zeta = v, \quad w_1 = -v + p_1 + 2p_2, \quad w_2 = -v + etc.$$

We easily see that the first pivot, with v entering is degenerate. The second pivot, however, will usually have a possible degenerate pivot, but there will usually be a possible non-degenerate pivot unless there are extra constraints (such as in some 2×3 or $2 \times n$ with $n \ge 3$) (or unless our hand is forced by using the perturbation method, but then the pivot isn't really degenerate).

A lot of people assumed that if the objective was $x_1 + x_2$, then the entering variables in the first two pivots would necessarily be x_1 and x_2 ; this is not true.

Additional remarks:

- 1. For the final exam, you definitely want know the basic algorithms used in this course, including simplex method (including two-phase method and perturbation method) and how to solve a 2×2 matrix game. You should iron out any problems regarding unbounded dictionaries and when to stop the simplex method (a number of people kept going on Problem 1 beyond the w_2 entering the basis unboundedly).
- 2. Getting a 4 out of 4 on a problem does not mean you have done it perfectly. For example, on Problem 2, part (c), a lot of people tacitly assumed that A has all positive entries; in general you have to modify A in order to make this assumption. Please look at the solutions; although I ignored a number of such details on the midterm, I hope to see a more complete answers on the final exam.
- 3. The solutions given here are very long and detailed; such detail is not needed for your solution; for example, on Problem 1, you don't have to write "due to the negative constraints etc." You could write "infeasible dictionary, so add x_0 's."

Be sure that this examination has 6 pages including this cover

The University of British Columbia

Midterm Examinations - October 2014

Mathematics 340

Closed book examination

Time: 50 minutes

Name	Signature	
Student Number	Instructor's Name	
	Section Number	

Special Instructions:

Calculators, notes, or other aids may not be used. Answer questions on the exam. This exam is two-sided!

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS		
card upon request.		
2. Read and observe the following rules:		
No candidate shall be permitted to enter the examination room after the expi-		
ration of one half hour, or to leave during the first half hour of the examination.		
Candidates are not permitted to ask questions of the invigilators, except in		
cases of supposed errors or ambiguities in examination questions.		
CAUTION - Candidates guilty of any of the following or similar practices		
shall be immediately dismissed from the examination and shall be liable to		
disciplinary action.		
(a) Making use of any books, papers or memoranda, other than those au-		
thorized by the examiners.		
(b) Speaking or communicating with other candidates.		
(c) Purposely exposing written papers to the view of other candidates. The		
plea of accident or forgetfulness shall not be received.		
3. Smoking is not permitted during examinations.		

1	10
2	20
Total	30