Solutions: Homework \#7

1. Problem 3.5:
(a) By adding the same constant, C, to each $c_{i j k}$ you simply add $3 n C$ to the total utility, without affecting which matching is best.
(b) This is essentially the same argument done in class for 2dimensional matching: assume that you are working with the inequalities where each $=$ is replaced by $\mathrm{a} \leq$. We claim that in optimality one cannot have

$$
\sum_{j k} x_{i j k}<1
$$

for some $i=i_{0}$ (the case where the summation is over i, k for fixed $j=j_{0}$, or i, j for fixed $k=k_{0}$, is argued similarly): if so, then we have

$$
\sum_{i j k} x_{i j k}<n
$$

and hence there exists a j_{0} for which

$$
\sum_{i k} x_{i j_{0} k}<1
$$

and a k_{0} for which

$$
\sum_{i j} x_{i j k_{0}}<1
$$

In this case we may add some small amount to $x_{i_{0} j_{0} k_{0}}$ without violating the inequalities; since the $c_{i j k}$ are all strictly positive, this increase would increase the utility, which violates the assumed optimality of the solution.
(c) In this linear program we get a feasible solution by taking all the $x_{i j k}$ to be zero. The linear program is bounded by n times the maximum value among the $c_{i j k}$.
(d) Since this linear program has $3 n$ constraints, all dictionaries have $3 n$ basic variables, and hence at most $3 n$ nonzero variables in any BFS (Basic Feasible Solution) associated to any dictionary of the simplex method. Hence in the optimal dictionary, which gives the optimal solution, we have at most $3 n$ nonzero values.
2. Problem 3.6:
(a) The columns associated to x_{1} and x_{2} in the "big A " matrix are the same; since A_{B} is invertible, we cannot have both x_{1} and x_{2} basic.
(b) The initial dictionary is

$$
\begin{aligned}
\zeta & =4 x_{1}+5 x_{2} \\
w_{1} & =10-x_{1}-x_{2} \\
w_{2} & =21-2 x_{1}-2 x_{2} \\
w_{3} & =29-3 x_{1}-3 x_{2}
\end{aligned}
$$

Say that x_{1} enters; then w_{3} leaves and we get

$$
\begin{aligned}
\zeta & =116 / 3-(4 / 3) w_{3}+x_{2} \\
w_{1} & =1 / 3-(1 / 3) w_{3} \\
w_{2} & =4 / 3-(2 / 3) w_{3} \\
x_{1} & =29 / 3-(1 / 3) w_{3}-x_{2}
\end{aligned}
$$

Then x_{2} enters and x_{1} leaves, which gives

$$
\begin{aligned}
\zeta & =145 / 3-(5 / 3) w_{3}-x_{1} \\
w_{1} & =1 / 3-(1 / 3) w_{3} \\
w_{2} & =4 / 3-(2 / 3) w_{3} \\
x_{2} & =29 / 3-(1 / 3) w_{3}-x_{1}
\end{aligned}
$$

which is an optimal dictionary. If x_{2} enters the dictionary first then we immediately get the same optimal dictionary.
The reasoning in subquestion (1) does not depend on the constants 10, 21, and 29; hence this conclusion is independent of these constants.
(Note that in all dictionaries, if x_{1} or x_{2} is in the basis, then the other is nonbasic and appears only the the x_{i} dictionary row, always with a -1 coefficient; we explained why this is true in class when we had variables that could be positive or negative, so each such variable had to be written as the difference of two non-negative variables; in this case, if one difference is $t_{1}-t_{2}$, then then t_{1} column in "big A " is minus that of t_{2}.)
3. Problem 3.7:
(a) Since the data points don't lie on a single line, we must have $d>0$. By adding $C+C x$ to each data point for C large, the new optimal will have the new a and b equal to C plus the old a and b. [Note that at this point we don't know how large we need C to be.]
Since a, b, d can be assumed to be non-negative, we get a linear program in standard form as:

$$
\begin{aligned}
& \operatorname{maximize} \zeta=-d, \quad \text { subject to } \\
&-a-d \leq-4, \\
& a-d \leq 4, \\
&-b-a-d \leq-6, \\
& b+a-d \leq 6, \\
&-2 b-a-d \leq-7, \\
& 2 b+a-d \leq 7, \\
&-3 b-a-d \leq-10 \\
& 3 b+a-d \leq 10 \\
& \text { and } \quad b, a, d \geq 0
\end{aligned}
$$

(b) We may take any value of a, b, and then take d to be the maximum absolute value of $|y-a-b x|$ taken over all data points (x, y); these values of a, b, d are feasible. Clearly d is bounded below by zero.
(c) It follows that in any optimal dictionary a, b, d must be basic, so at least three of the slack variables must be nonbasic and hence zero in the optimal solution. (Since we cannot have both $y-a-b x$ equalling d and $-d$ for a data point (x, y) (since $d \neq 0$ any any solution), the three slack variables are associated to three different data points.)
(d) The above arguments do not depend on the number of data points, as long as the data points do not all lie on one line (so that d cannot be 0). (This implies that there are at least three data points, or two data points with the same x value but different y values.)
4. Problem 3.9: We have $w_{1}, w_{2}, w_{3}, w_{4}$ are slack variables with $w_{1}+w_{2}=$ $w_{3}+w_{4}$. For any dictionary, the basic variables, B, must be uniquely expressible in terms of the nonbasic variables (since A_{B} is invertible). But since $w_{1}+w_{2}-w_{3}-w_{4}=0$, if $w_{1}, w_{2}, w_{3}, w_{4}$ were all nonbasic, then one could add any multiple of $w_{1}+w_{2}-w_{3}-w_{4}$ to any entry in the dictionary, showing that one can express any basic variable in infinitely many ways in the dictionary. Hence $w_{1}, w_{2}, w_{3}, w_{4}$ cannot all be nonbasic.

Here is another proof: since $w_{1}+w_{2}=w_{3}+w_{4}$, it follows that if we take row 1 of "big A " and add to it row 2 and subtract rows 3 and 4 , we get a matrix that is row equivalent to "big A " but is zero in row 1 outside of the coefficients in the $w_{1}, w_{2}, w_{3}, w_{4}$ columns. So if $w_{1}, w_{2}, w_{3}, w_{4}$ were all non-basic, A_{B} would be row equivalent to a matrix with all zeros in its first row; this contradicts the fact that A_{B} is invertible.

