Math 340-101 Fall 2014
Solutions: Homework #6

1. Problem 3.1:

111005
120108
21001 8|
4500 0] 0]
x1 enters, so wg = x5 is the most restrictive and it leaves; so we divide
row 3 by 2
11 10 0 | 5
1 2 01 0 | 8
1 1/2 0 0 1/2 | 4|’
4 5 00 0 | 0]

and then we clear out all column 1 entries on rows not equal to 3, i.e.,
we subtract row 3 from row 1

012 10 —1/2 | 1
1 2 01 0 |38
1 1/2 00 1/2 | 4|’
4 5 00 0 | 0]

and similarly subtract row 3 from row 2 and subtract 4 times row 3
from row 4 (the ¢ row)

01/2 10 —1/2 | 1
03/201 —1/2 | 4
1 1/2 00 1/2 | 4
0 3 00 -2 | —16]

This finishes one pivot; now, looking at the { row, we see that x5 must
enter; the most restrictive constraint from all rows is row 1, and this
corresponds to the basic variable z3 = wy, so x3 = w; leaves. So we
divide row 1 by 1/2,

0 1 20 -1 | 2
03/20 1 —1/2 | 4
1 1/2 00 1/2 | 4}
0 3 00 -2 | —16]



and then clear out everything in column 2 in rows 2, 3, 4:

01 2 0 -1 2
00 =31 1 | 1
10 -10 1 | 3
00 -6 0 1 | —22]
Now the ¢ row shows that xs; must enter the basis, and the most re-
strictive is row 2, corresponding to x4 = ws which leaves; so we use the
1 in column 5 of row 2 to clear out anything in column 5 either above
or below row 2:

01 -1 1 0] 3
00 -3 1 1| 1
10 2 -10] 2
0 0 =3 -1 0 | —23]
This gives the same final tableau as before.

. Problem 3.2: The first tableau is

111003
10010 |2
0100112
1 7000 | 0]

Taking x5 to enter, the most restrictive is the third row, so we pivot on
the third row, column 2:

1010 -1 1
1001 0 | 2],
0100 1 | 2|
1 000 —7 | —14]

the associated eta matrix to affect these row operations in the non-zeta
rows (i.e., rows 1-3) is

10 -1
01 O
0 0 1

Now x; enters, and the most restrictive is row 1, so we pivot on row 1,
column 1:

1
0
0

|0
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—_



the associated eta matrix to affect these row operations is

1
-1
0

S = O
_ o O

Now x; enters, and the most restrictive is row 1, so we pivot on This
is a final dictionary, giving o = 2 and x; = 1 as the optimal solution.

. Problem 3.4.

(1) Given that we obtain each AE}H from an eta matrix multiplied by
A;il, if we have already computed A;il (or made some computation
to allow ourselves to multiply vectors on the left and right by Ag}),
then the additional cost of multiplying by an eta matrix of dimension
100 x 100 would be an addition 200 FLOPS (floating point operations).
So for the first few steps we would definitely want to use the repeated
multiplication by a few eta matrices to determine the parts of the dic-
tionary that we need to look at.

(2) By the same principle, the cost of repeatedly multiplying by 500 eta
matrices would be roughly 500 times 200 FLOPS; on the other hand,
multiplying a 100 x 100 matrix (of the inverse of any 100 x 100 matrix)
by a column or row vector would take roughly 100 times 200 FLOPS
(once the inverse is recomputed, i.e., once the matrix is refactored).
Of course would take roughly 100% time to factor a general 100 x 100
matrix, but the claim in the Vanderbei is that often this is much smaller
for the types of matrices one uses in practice (see Section 8.4).

In Section 8.4 it is claimed explained that one recomputes Ag} for
about every 100 or so interations, although a theoretical calculation of
the number of FLOPS used shows that if the number of FLOPS needed
to refactorize Agil is m3, you should refactorize every m iterations,
and if it is m? (which happens in some sparser problems), you should
refactorize every /m iterations (where the eta matrices are m x m).
The effect of roundoff error is not discussed in Section 8.4.

In any event, it is clear that once one computes Al_i‘il (probably implicitly
by computing an LU-decomposition), for the next few iterations it is
advantageous to use eta matrices, and for a large number of interations
eta matrices will be problematic (either in roundoff error or, after a



very long time, because it is cheaper to recompute A;il). The details
of exactly how often one should refactor will depend on the particular
problem.



