Homework \#5

1. Consider the matrix game,

$$
A=\left[\begin{array}{cc}
1 & 16 \\
4 & 9 \\
9 & 4 \\
16 & 1
\end{array}\right]
$$

and consider the task of finding Alice's optimal strategy, $\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array} p_{4}\right]$.
(a) Argue that the value, v, of this game is a bounded, positive number.
(b) Write down a linear program to determine this value, v, and the optimum strategy $\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array} p_{4}\right.$], and argue that the condition

$$
p_{1}+p_{2}+p_{3}+p_{4}=1
$$

can be replaced with the condition

$$
p_{1}+p_{2}+p_{3}+p_{4} \leq 1
$$

(why?).
(c) Argue that Alice has an optimal strategy with at most two of the p_{i} 's being non-zero.
(d) Find the value and optimal mixed strategies of the matrix game consisting of the first and last row of the above matrix game, i.e., the game

$$
A^{\prime}=\left[\begin{array}{cc}
1 & 16 \\
16 & 1
\end{array}\right]
$$

in any way you like.
(e) Using the optimal mixed strategies in in A^{\prime}, what happens if Betty plays the same mixed strategy in the game A, and Alice plays the same strategy, meaning that Alice doesn't play the second or third row? Do you get optimal mixed strategies in A ?
(f) If A is a 100×2 matrix game, and your intuition tells you that Alice's best mixed strategy uses only rows 12 and 29, describe a relatively quick method to see if your intuition is correct.
2. Final Exam, April 2009, Problem 4.

