
MATH 340: ETA MATRICES, THE ASSIGNMENT

PROBLEM, AND OTHER APPLICATIONS

JOEL FRIEDMAN

Contents

1. Eta Matrices, Tableaux, and the Revised Simplex Method 2
1.1. Tableaux and Eta Matrices 2
1.2. Tableaux Example 5
1.3. Matrix Notation and Eta Matrices 6
1.4. The Revised Simplex Method 7
2. Applications 9
2.1. Weighted Bipartite Matching 9
2.2. General Remarks About Game Theory 12
2.3. The Big Poker Question 12
3. Learning Goals and Sample Exam Problems 13
References 25

Copyright Joel Friedman 2014. Not to be copied, used, or revised without
explicit written permission from the copyright owner.

The point of this article is to summarize what was covered in class in Math
340 after Chapters 1–5 of Vanderbei’s text [Van14] (the simplex method).
Although most of these topics are discussed somewhere in [Van14], the text-
book often gives too many details or too vast a general setting to make
it easy to understand the concepts; here we make the discussion brief—as
was done in class—to make the important ideas as easy to understand as
possible.

At this point this set of notes covers:

(1) eta matrices (in [Van14], Section 8.3) and the revised simplex method
(in [Van14], Chapter 8);

(2) applications, including
(a) the Assignment Problem (i.e., Weighted Bipartite Matching)

(in Section 15.2 of [Van14], which relies on the more general
discussion of Chapter 14);

(b) matrix games, including our poker game where Alice has 252

possible strategies;
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2 JOEL FRIEDMAN

(c) other applications covered in the exercises;
(d) remarks in the exercises about linear programs with unrestricted

variables (i.e., that can take on negative and positive values):
although in standard form we express each unrestricted variable
as the difference of two non-negative variables, this does not
mean that we are doing twice the work;

(e) similar remarks when we have constraints that are equalities
instead of inequalities.

1. Eta Matrices, Tableaux, and the Revised Simplex Method

Matrix notation is covered in Section 6.1 of Vanderbei, and eta matrices
in Section 8.3. We wish to make some remarks about this, and discuss
“tableaux,” which are not discussed in Vanderbei’s text.

1.1. Tableaux and Eta Matrices. Consider the LP that we use over and
over in this class,

maximize ζ = 4x1 + 5x2, subject to

x1 + x2 ≤ 5,
x1 + 2x2 ≤ 8,
2x1 + x2 ≤ 8,

and x1, x2 ≥ 0.

with initial dictionary:

ζ = 4x1 + 5x2

w1 = 5− x1 − x2
w2 = 8− x1 − 2x2

w3 = 8− 2x1 − x2
In matrix notation we write

~x =


x1
x2
x3
x4
x5

 =


x1
x2
w1

w2

w3


(we write x3, x4, x5 for w1, w2, w3) and write the dictionary as

(1)

1 1 1 0 0
1 2 0 1 0
2 1 0 0 1

 ~x = ~b =

5
8
8


Notice the identity matrix that appears as a submatrix of the big matrix to
the left of ~x; in class and in this article we sometimes refer to this big, 3× 5
matrix as “big A.”
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How can we view the simplex method pivot “x2 enters and x4 (i.e., w2)
leaves”? (Note that for now we ignore the objective ζ.) With dictionaries,
the equation

w2 = 8− x1 − 2x2

is convered to
x2 = 4− (1/2)x1 − (1/2)w2.

In the style of (1) we are converting the equation

x1 + 2x2 + w2 = 8

to
(1/2)x1 + x2 + (1/2)w2 = 4,

which is nothing but multiplying the second row of the matrix in (1) by 1/2.
In augmented matrix notation we write the equations for ~x:1 1 1 0 0 | 5

1 2 0 1 0 | 8
2 1 0 0 1 | 8


in the equivalent system of equations1 0 0

0 1/2 0
0 0 1

1 1 1 0 0 | 5
1 2 0 1 0 | 8
2 1 0 0 1 | 8

 =

 1 1 1 0 0 | 5
1/2 1 0 1/2 0 | 4
2 1 0 0 1 | 8


Notice that the row operation “leave rows 1 and 3 alone, and multiply row 2
by 1/2” corresponds to the leftmost matrix above, a 3×3 matrix representing
these operations; this multiplication yields an equivalent set of equations.

The remaining basic variables, x3 = w1 and x5 = w3 are then, in the
dictionary point of view, expressed in terms of x1 and x4 = w2; in terms
of the augmented matrix this corresponds to clear out the top and bottom
entries of the second column (corresponding to x2). In other words the new
dictionary is given by the set of row operations indicated by the 3×3 matrix1 −1/2 0

0 1/2 0
0 −1/2 1

1 1 1 0 0 | 5
1 2 0 1 0 | 8
2 1 0 0 1 | 8

 =

1/2 0 1 −1/2 0 | 1
1/2 1 0 1/2 0 | 4
3/2 0 0 −1/2 1 | 4


Notice that the new dictionary is expressed as the rightmost matrix above,
and that columns 3, 2, and 5 (in that order) form an identity matrix. We
could convert the above to a dictionary where x3, x2, x5 are basic, and x1, x4
are non-basic. We abbreviate the above matrix multiplication as

E1D1 = D2,

where D1 is the augmented matrix for the first dictionary, D2 for the second,
and E1 is the “eta matrix”

E1 =

1 −1/2 0
0 1/2 0
0 −1/2 1





4 JOEL FRIEDMAN

Definition 1.1. By an eta matrix we mean a square matrix which has the
same columns as the identity matrix on all but one of its columns, say its
i-th column, and whose i, i entry is non-zero.

The following theorem is easy to see.

Theorem 1.2. Any eta matrix, E, is invertible, and its inverse, E−1, is an
eta matrix with the same non-identity column as in E.

In general, we see that if we pivot again, then the next dictionary, D3, is
given as

E2D2 = D3

where E2 is another eta matrix. For example, if we examine the objective

ζ = 4x1 + 5x2 = 4x1 + 5(4− (1/2)x1 − (1/2)x4) = 20 + (3/2)x1 − (5/2)x4,

we want x1 to enter, and hence x3 = w1 to leave, we have “x1 enters and x3
leaves” corresponds to the row operations given by the eta matrix

E2 =

 2 0 0
−1 1 0
3 0 1


which transforms the first column of D2 into [1 0 0]T; hence we obtain the
third dictionary matrix, D3, as

D3 = E2D2 =

 2 0 0
−1 1 0
3 0 1

1/2 0 1 −1/2 0 | 1
1/2 1 0 1/2 0 | 4
3/2 0 0 −1/2 1 | 4


=

1 0 2 −1 0 | 2
0 1 −1 1 0 | 3
0 0 −3 1 1 | 1


This is just our familiar final dictionary rows where we express x1, x2, x5 =
w3 in terms of x3 = w1 and x4 = w2.

Notice that we can also write

D3 = E2D2 = E2E1D1,

and so two pivots can be represented as a product of two appropriate eta
matrices.

In order to encorporate the objective ζ into this augmented matrix nota-
tion, we may write the ζ line as 4x1 + 5x2 in the bottom of any dictionary;
to do this in the third dictionary we write

1 0 2 −1 0 | 2
0 1 −1 1 0 | 3
0 0 −3 1 1 | 1
4 5 0 0 0 | 0


Of course, this doesn’t look right because we want to write ζ in terms of
the non-basic variables; this corresponds to clearing out the 4 and 5 and 0
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in the basic variables by row operations: we subtract 4 times row 1 and 5
times row 2 from the ζ line to get

1 0 2 −1 0 | 2
0 1 −1 1 0 | 3
0 0 −3 1 1 | 1
0 0 −3 −1 0 | −23


This array of numbers should look very (comfortingly) familiar; the 23 has
a negative sign because this bottom line really says

−3x3 − x4 = −23 + ζ;

can also write the bottom row with negative signs, but you must remember
which is which. You can also view ζ as a variable. In class, I will use the
above convention.

We may write all the dictionaries in these tables of numbers, which are
generally called tableaux (the plural of the French tableau).

1.2. Tableaux Example. Let us summarize the simplex method on usual
LP, adding the objective ζ = 4x1 + 5x2 to each step. The initial dictionary

ζ = 4x1 + 5x2

w1 = 5− x1 − x2
w2 = 8− x1 − 2x2

w3 = 8− 2x1 − x2
has corresponding tableau

1 1 1 0 0 | 5
1 2 0 1 0 | 8
2 1 0 0 1 | 8
4 5 0 0 0 | 0

 ,
with the bottom row the ζ row. Then x2 enters and x4 = w2 leaves means
that we use row operations to convert column to [0 1 0 | 0]T, which is what
the x4 = w2 looks like before the pivot. We get the second tableau

1/2 0 1 −1/2 0 | 1
1/2 1 0 1/2 0 | 4
3/2 0 0 −1/2 1 | 4
3/2 0 0 −5/2 0 | −20


The second and final pivot, x1 enters and x3 = w1 leaves gives the final
tableau 

1 0 2 −1 0 | 2
0 1 −1 1 0 | 3
0 0 −3 1 1 | 1
0 0 −3 −1 0 | −23


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1.3. Matrix Notation and Eta Matrices. Now let us see how this figures
into our matrix notation. We write our dictionary constraints as:

AB~xB +AN~xN = ~b

where AB are the columns corresponding to the basic variables in the big
matrix in (1), and AN those corresponding to the non-basic variables. All
our dictionaries can be derived from the above equation. So the first dictio-
nary, derived from 1 1 1 0 0

1 2 0 1 0
2 1 0 0 1

 ~x = ~b =

5
8
8


is expressed as 1 0 0

0 1 0
0 0 1

x3x4
x5

+

1 1
1 2
2 1

[x1
x2

]
=

5
8
8


It is more instructive to consider the second dictionary, where x3, x2, x5 are
basic and x1, x4 are non-basic. This is, therefore:1 1 0

0 2 0
0 1 1

x3x2
x5

+

1 0
1 1
2 0

[x1
x4

]
=

5
8
8


We therefore get:x3x2

x5

 =

1 1 0
0 2 0
0 1 1

−15
8
8

−
1 0

1 1
2 0

[x1
x4

]
Curiously (or not so curiously) we note that1 1 0

0 2 0
0 1 1

−1 =

1 −1/2 0
0 1/2 0
0 −1/2 1


which is just the matrix we called E1. Similarly, the third dictionary, with
x1, x2, x5 in the basis can be determined by:1 1 0

1 2 0
2 1 1

x1x2
x5

+

1 0
0 1
0 0

[x3
x4

]
=

5
8
8

 ;

not surprisingly, we have 1 1 0
1 2 0
2 1 1

−1
is the matrix given by E2E1 above. In other words we have

A−1B1
= E1A

−1
B0
,
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and

A−1B2
= E2A

−1
B1
,

where B0, B1, B2 are the basic variables at step 1, 2, 3 (respectively) of the
simplex method, and the Ei were the eta matrices describing the row oper-
ations above.

It is clear that this discussion generalizes to any form of the simplex
method. Let us record these observations.

Theorem 1.3. Let Bi be the set of basic variables on the i-th iteration of
this simplex method, and let ABi be the part of the matrix “big A” that
corresponds to the basic variables in the i-th stage of the simplex method.
Then for any positive integer i, we have

A−1Bi
= EiA

−1
Bi−1

where Ei is an eta matrix representing the row operations used to convert
the i-th tableau to the (i+ 1)-st tableau.

Corollary 1.4. If ABi is as in the above theorem, then ABi is invertible for
all i. In particular,

(1) there is no way to linearly combine the rows of ABi non-trivially and
get a row of all zeros; and

(2) the same, with “rows” replaced with “columns.”

The latter statements in this corollary follow from the fact that if the rows
or columns of a square matrix are linearly dependent, then the determinant
of the matrix must be zero, and hence this matrix cannot have an inverse.

The above corollary is crucial to our discussion of weighted bipartite
matching.

1.4. The Revised Simplex Method. Another application of the eta ma-
trices is to the revised simplex method. The idea is as follows: the dictio-
naries will look like:

AB~xB +AN~xN = ~b,

ζ = ~c · ~x = ~cB · ~xB + ~cN · ~xN = ~cTB~xB + ~cTN~xN

(the transpose convention for dot products will be useful here). We can
solve for ~xB to get

~xB = A−1B (~b−AN~xN ),

ζ = ~cTB~xB + ~cTN~xN

= ~cTBA
−1
B (~b−AN~xN ) + ~cTN~xN

= ~cTBA
−1
B
~b+ (~cTN − ~cTBA−1B AN )~xN

Let us pause to summarize the above calculations.
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Theorem 1.5. If B is any set of basis variables in the simplex method, then
AB is invertible, and the dictionary associated to B is given by

~xB = A−1B
~b − A−1B AN ~xN ,

ζ = ~cTBA
−1
B
~b + (~cTN − ~cTBA

−1
B AN ) ~xN .

In practice we don’t want to write down every entry of this dictionary,
rather we only write down those we need for each pivot. As these formulas
suggest, the most laborious task is to compute A−1B times various quantities.

Remark 1.6. Generally we only need to compute the ζ row to determine
which variable enters, and then compute the dictionary entries of this en-
tering variable (and the dictionary constants) to see which variable leaves.
By the above formulas we will want to compute the ζ row coefficients:

~cTBA
−1
B AN .

We note that we compute this as

(~cTBA
−1
B )AN , not ~cTB(A−1B AN ).

The latter way is much more expensive.

For the first pivots we might just use:

A−1B1
= I, A−1B2

= E1, A−1B3
= E2E1, etc.

So that we compute

~cTBA
−1
B3

as

~cTBE2E1.

After a number of iterations, two problems arise:

(1) it is no longer a savings to use

A−1Bi
= Ei−1Ei−1 . . . E1

for very large i, and
(2) the formula

A−1Bi
= Ei−1Ei−1 . . . E1

tends to introduce a lot of roundoff error.

It turns out that both of these issues can be important, depending on the
problem.

There are a number of subtleties here. For one, we never actually write
down the whole matrix, A−1Bi

, rather we factor ABi as LU , with L lower
triangular and U upper triangular, and use this “LU -decomposition” to
compute A−1Bi

when applied to vectors. So every so often we compute A−1Bi

from scratch, and then use

A−1Bi+1
= EiA

−1
Bi
, A−1Bi+2

= Ei+1EiA
−1
Bi
,
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and so on, until the repeated use of eta matrices is problematic; then we
refactor the ABi′ (for some i′ > i), and the use

A−1Bi′+1
= Ei′A

−1
Bi′
, A−1Bi′+2

= Ei′+1Ei′A
−1
Bi′
,

again for a while.
Assuming that we refactor the ABi every s steps, and that refactorizing

an ABi takes m3 time, and that applying ABi takes time m2, the average
cost over s steps is of order m3s−1 (refactorizing every s steps), and ms (the
last s/2 steps involve multiplying out at least s/2 matrices), we see that
m3s−1 + ms is optimal for s = m (where m3s−1 + ms becomes order m2).
Furthermore, in Vanderbei’s text it is claimed that in certain sparse problems
the refactorizations require closer to m2 steps, in which case s is optimal
when of order

√
m, so that m2s−1 +ms is over order m3/2. Vanderbei’s text

does not perform any analysis to indicate when roundoff errors become a
problem.

If we have a linear program in standard form with constraints A~x ≤ ~b
where A is an m× n matrix, then we have n decision variables and m slack
variables, and hence all the ABi matrices are m × m. If m is large, then
computing A−1Bi

is expensive, but each eta matrix, Ei, has only one column

(of m numbers) that we need to remember, and hence multiplying by Ei
requires only order m FLOPS (Floating Point OPerationS).

There are a number of details to get this method to work quickly, and
a number of computational issues involved (see the rest of Chapter 8 of
Vanderbei).

2. Applications

2.1. Weighted Bipartite Matching. The Assignment Problem, or
Weighted Bipartite Matching problem, discussed in class and in Section 15.2
of Vanderbei is the problem:

maximize

n∑
i,j=1

cijxij

subject to

∀i, xi1 + xi2 + · · ·+ xi,n = 1,

and

∀j, x1j + x2j + · · ·+ xn,j = 1,

and all xij ≥ 0.
To simplify the linear program, we argue that we can add the same con-

stant to all of the cij without altering the optimal choice of xij . Hence we
may assume that cij > 0 for all i and j. In class we argued that we could
weaken the constraints to

∀i, xi1 + xi2 + · · ·+ xi,n ≤ 1,
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and
∀j, x1j + x2j + · · ·+ xn,j ≤ 1,

and all xij ≥ 0.
We therefore get a dictionary with

ζ =
∑
i,j

cijxij ,

and slack variables

wrowi = 1− xi1 − xi2 − · · ·xin for i = 1, . . . , n

and
wcolj = 1− x1j − x2j − · · ·xnj for j = 1, . . . , n.

Since this problem is feasible and bounded (by n times the maximum of the
cij), there is a final dictionary giving an optimal solution.

In class, we argued that each slack variable must be zero in an optimal
solution (or else we could increase at least one of the xij and get a higher
objective value).

The fact that
n∑
i=1

wrowi =
n∑
j=1

wcolj

shows that we can combine the rows of the initial dictionary (or tableau) to
get a tableau row that looks like

[0 0 · · · 0 1 1 · · · 1 − 1 − 1 · · · − 1]

where the 1’s correspond to the wrowi variables, and the −1’s correspond to
the wcolj variables. It follows that any simplex method basis variables ~xB
must contain at least one the the wrowi or wcolj variables, for otherwise the
AB columns can be combined non-trivially to get a row of all 0’s in AB, and
hence AB would not be invertible. This means that there are at most 2n−1
of the xij ’s in any basis of the simplex method, and hence any basis has at
most one xij in one of its rows, and similarly in one of its columns. In the
final dictionary it follows that in such a row and column there corresponds
an xij that is the only non-zero variable in that row and column, and hence
xij = 1.

From here one can argue that the simplex method (perhaps applied re-
peatedly to smaller problems) will generate a solution for which each xij is
either one or zero.

However, there is a further remarkable property of the final dictionary
of the simplex method running on a such a problem. It is mentioned in
Chapter 14 of Vanderbei (in the general context of the “Network Simplex
Method”), but not proven there.

Theorem 2.1. Consider any dictionary of the linear program above for the
n× n Weighted Bipartite Matching (i.e., the Assignment Problem) with the
above notation. Consider the bipartite graph, G, with n vertices on the left
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and n on the right, and whose edges are the xij appearing in the basis. Then
this graph has no cycles, i.e., this graph is a forest, i.e., this graph is a union
of trees.

Like our observation that any dictionary must have at least one wrowi or
wcolj being a basic variable, we emphasize that this theorem is valid for any
dictionary. Using this theorem it is easy to see that any final dictionary for
the above simplex method has all the xij ’s being one or zero. This reason,
and the graph theory involved (cycles, trees, forests, etc.) will be discussed
in class.

Proof. Each xij column appears in exactly two places: the wrowi and wcolj
slack variable location, with a −1 coefficient in both places. A cycle in the
above bipartite graph, say of length 2k, is equivalent to having

xi1,j1 , xi2,j1 , xi2,j2 , xi3,j2 , . . . xik,jk , xik,j1

as basic variables. But then the alternating sum of the columns of “big A”
corresponding to the above variables

Axi1,j1 −Axi2,j1 +Axi2,j2 −Axi3,j2 . . .+Axik,jk −Axik,j1

is a column of zeros. But this would show that AB is not invertible. Hence
the bipartite graph in the theorem contains no cycles.

It is a standard fact from graph theory that if G is a graph no cycles,
then between any two vertices there is at most one path, and hence each
connected component of G is a tree, i.e., G is a forest. �

Given the above theorem, consider a final dictionary and the above graph,
G, for such a dictionary. Let v be any leaf (see the paragraph below) of the
above graph, and say that v corresponds left vertex (which in class we called
a “person”) number i. Then it follows that there is a unique j such that
xij is in the basis; hence if j′ 6= j, xij′ is non-basic, and hence xij′ = 0 in
the corresponding BFS (Basic Feasible Solution). Hence xij = 1 (since the
wrowi variable must be zero in the BFS for the optimal dictionary). It then
follows that xi′j = 0 for any i′ 6= i (such an xi′j may be basic or non-basic;
so by removing left vertex (person) i and right vertex (which we called a
“task” in class) j, we discard the edge xij of the graph, giving us a forest G′

with one edge fewer, and we are still left with a forest. Now we can repeat
this argument on G′, finding an xi′j′ = 1, and discarding this edge to get
G′′. Eventually we discard all edges for G, giving us that xij = 1 for any
edge of G. Hence in the final dictionary, all xij that are basic equal 1.

As far as the graph theory that we need, we made a few claims above
that should seem reasonable. We really only need the following result: if
G = (V,E) is a graph, and the degree of a vertex, v (i.e., the number of
edges incident upon v), is denoted d(v), then we have

|E| − |V | =
∑
v∈V

(
2− d(v)

)
/2.
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For a tree (which is a connected graph without cycles) we have |E| − |V | =
−1, and so at least one vertex of G must have d(v) ≤ 1; if G is not an
isolated vertex, then d(v) is never zero, and hence there exist at least two
vertices with d(v) = 1. A vertex with degree one is called a leaf.

2.2. General Remarks About Game Theory. We made a number of
observations regarding game theory, some before the coverage of eta matri-
ces.

First, the linear program giving the optimal strategy for Alice in “Alice
announces a mixed strategy” is the one with Alice replaced by Betty.

Second, complementary slackness in linear programming makes the follow-
ing simple observation about game theory: assume that ~p is Alice’s optimal
mixed strategy in a matrix game with matrix A, and that

~pA = [3 4 5 6 3 4];

hence the value of the mixed game is 3 (assuming that ~p is optimal). Then
Betty, who has 6 strategies, will only play column 1 and 5 in an optimal
strategy for her, for otherwise Betty will be unable to achieve the value 3.
By writing down the linear programs for Alice’s and Betty’s optimal mixed
strategies, we can chase through the complementary slackness picture to
verify that this remark is just “half” of complementary slackness.

Third, imagine that we have a 100 × 4 matrix game with all positive
entries, so that game “Alice announces a mixed strategy” amounts to the
linear program maximize v subject to

[p1 . . . p100]A ≥ [v v v v], p1 + · · ·+ p100 ≤ 1

with the pi and v being non-negative. Then the dictionaries for the simplex
method on this linear program have 5 basic variables; in the final dictionary
v must be basic, since v is positive in the optimal solution (v is as least as
large as the smallest entry of A); this leaves at most 4 of the pi that can be
basic. It follows that there is an optimal strategy for Alice using at most 4
of the rows. A similar remark can be made for any shape of matrix.

2.3. The Big Poker Question. Consider the “big poker question” of Sec-
tion 8 of the handout on game theory: (1) Alice and Betty each ante one
penny; (2) Alice is dealt one of 52 cards; she looks at the card, but Betty
cannot see the card; she either bets one penny or folds; (3) Betty either calls
with one penny or folds. If Alice bets and Betty calls, then Betty draws a
card and compares it to Alices card; the higher ranked card wins (in some
order, say poker order).

Since Betty cannot see the card, Betty has only two pure strategies: call
or fold. However, in a pure strategy Alice can elect to bet or fold; since she
has to make a choice of these two options for 52 different cards, Alice has
252 pure strategies.

In class we tried to reduce the number of possible strategies; we also
wanted to see if our reductions would teach us some general principles.
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The first observation is that if Alice bets on some set of cards, B ⊂
{1, . . . , 52}, then if we fix the size of B to b = |B|, then for b fixed Alice
does best to bet the top b cards. This shows us (something that we already
suspected in September), that she only has 53 possible strategies, namely

for b = 0, 1, . . . , 52, Alice bets {52, 51, . . . , 52− b+ 1}.

We also calculated that if Alice chooses to bet b cards, then her correspond-
ing row in the matrix game looks like

~f(b) =
(
f1(b), f2(b)

)
where f2(b) was a linear function of b (if Betty always folds when Alice bets,
then Alice wins b times out of 52, and Betty wins 52 − b times out of 52),
and where

f1(b) =
−4

52 · 51
b2 + c1b+ c2

where c1, c2 were constants; in other words f1(b) is a quadratic function with
a negative b2 coefficient.

Then we made the following observations: in a matrix game, let Alice’s

b-th row be given as ~f(b) (the vector ~f has an many entries as there are
columns in the matrix for the matrix game). Then

(1) if ~f(b) is a strictly convex function of b (i.e., ~f ′′ is always non-negative

in all its components, assuming that ~f is twice differentiable), and
if there are m rows in the matrix, then there is an optimal strategy
for Alice involving only rows 1 and m; and

(2) if ~f(b) is a strictly concave function of b (i.e., ~f ′′ is always non-

positive, assuming that ~f is twice differentiable), then there is a row
r such that there is an optimal strategy for Alice involving only rows
r and r + 1.

In general, ~f(b) is not necessarily convex or concave, and our observations
are only valid assuming such properties.

3. Learning Goals and Sample Exam Problems

It seems best to make general learning goals concrete by connecting them
with sample exam problems.

Learning Goals:

(1) You should be able to do the simplex method via tableaux, and write
out the associated eta matrices. See Exercise 3.1, 3.2.

(2) You should know why eta matrices are important, and some of their
properties. See Exercise ??, ??.

Sample Exam Problems
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Exercise 3.1. Find the tableaux and eta matrices for our standard problem,
given in (1), but where the first pivot has x1 entering (instead of x2). There
will only be one choice of entering variable and leaving variable, and we
should finish after three pivots. Do this in the style of Subsection 1.2, where
the ζ line appears in the last row of the tableaux.

Exercise 3.2. Same as Exercise 3.1 (solve the linear program using
tableaux, and write out the eta matrices) for the linear program:

maximize ζ = x1 + 7x2, subject to

x1 + x2 ≤ 3,
x1 ≤ 2,
x2 ≤ 2,

and x1, x2 ≥ 0.

Exercise 3.3. Consider the matrix game

A =

[
1 2
4 5

]
.

Write down Alice’s optimal mixed strategy for this game as a linear program,
and use tableaux to find Alice’s best strategy. [Hint: by looking at A, we
see that Alice will play only row 2, since row 2 dominates row 1; so your
first pivot should be v enters (there will be a tie for leaving variables in this
degenerate pivot), and your second pivot shoul be p2 enters, to save time.]

Exercise 3.4. Say that you are solving a linear program with 100 variables
and 100 constraints. Explain why

(1) it may be advantageous to use eta matrices in the first 5 pivots:

A−1B1
= I, A−1B2

= E1, · · · , A−1B5
= E4E3E2E1,

and
(2) it may not be advantageous to use eta matrices for many pivots,

such as

A−1B500
= E499E498 . . . E2E1.

Explain why it may be advantegeous to recompute A−1Bi
every so often, and

use eta matrices in between recomputations. [These recomputations are
typically done by the LU -decomposition, not by writing down A−1Bi

, but this

is not important to us.]

Exercise 3.5. Consider the problem of 3-dimensional matching: intuitively,
you have n people, n tasks, and n labs; to each assignment of one person
to one task and one room, you are given a utility. You wish to maximize
the total utility in an assignment, meaning that to each person you assign
one task and one lab, so that all tasks are performed (each by one person)
and all labs are used (each by one person). More concretely, you have a
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3-dimensional array of real numbers cijk, and you want to choose xijk to be
0 or 1 such that ∑

i,j,k

cijkxijk

is maximized subject to

for all i,
∑
j,k

xijk = 1

for all j,
∑
i,k

xijk = 1

for all k,
∑
i,j

xijk = 1

Now consider the relaxation of the above problem, where each xijk can be a
real number between 0 and 1.

(1) Argue that to find the optimal xijk you can assume that each cijk is
positive.

(2) Argue that if all the cijk are positive, then you can replace the equal-
ities above by inequalities.

(3) Argue that the resulting linear program is feasible and bounded.
(4) Argue that if we run the simplex method, then we can find an optimal

solution such that at most 3n of the xijk are nonzero.

Remark: solving the original problem in which the xijk must all be 0 or 1
is an example of a problem that is “NP-complete.” Hence if you can find
a quick algorithm to determine the optimal solution subject to all xijk are
either 0 or 1, you will be instantly famous and awarded a $1,000,000 (USD)
prize.

Exercise 3.6. Consider the linear program to maximize 4x1 + 5x2 subject
to

x1 + x2 ≤ 10

2x1 + 2x2 ≤ 21

3x1 + 3x2 ≤ 29

x1, x2 ≥ 0

Argue that the simplex method will never yield a dictionary in which both
x1 and x2 are basic; do this in two ways:

(1) by considering the columns of AB, the basic part of “big A” corre-
sponding to any dictionary; and

(2) by describing all possible ways that the simplex method can be run
(e.g., the first pivot is either x1 enters or x2 enters).

Is the same true if the constants 10, 21, 29 in the above linear program are
replaced with any other constants?
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Exercise 3.7. Consider the line y = a + bx which is the best “max ap-
proximation” regression line to the data (0, 4), (1, 6), (2, 7), (3, 10). In other
words, consider the optimization problem:

min d subject to

|4− a| ≤ d,
|6− a− b| ≤ d,
|7− a− 2b| ≤ d,
|10− a− 3b| ≤ d.

(1) Assume you can argue that d, a, b must all be strictly positive. Then
write the above optimization problem as a linear program in stan-
dard form. [Hint: the inequality |10 − a − 3b| ≤ d is the same as
saying

10− a− 3b ≤ d and 10− a− 3b ≥ −d.]

(2) Argue that the above linear program is feasible and bounded.
(3) Show that in any optimal solution (again assuming d, a, b are

strictly), there must be three of the inequalities of your linear pro-
gram that must be satisfied with equality. The three inequalities
where the equalities are satisfied are known as “support points” (each
such inequality/equality corresponds to one of the data points).

(4) Assume you are now looking for the best max-approximation of y =
a+ bx to 10 data points (instead of the four data points above) that
don’t all exactly lie on a line y = a+bx), and say that you can argue
that the best fit occurs with an a and b that are both positive. Can
you still assert the existence of three “support points”?

Exercise 3.8. Consider the best “L1 approximation” regression line y =
a + bx to the five data points (0, 4), (1, 6), (2, 8), (3, 11), (4, 13). In other
words, consider the optimization problem:

min |4− a|+ |6− a− b|+ |8− a− 2b|+ |11− a− 3b|+ |13− a− 4b|

over all real a, b.

(1) Assume you can argue that for the optimal a, b, both their values are
positive. Write the above optimization problem as a linear program
in standard form. [ Hint: see Vanderbei, Section 12.4. ]

(2) Ask something else?

Exercise 3.9. Consider any linear program in standard form such that the
sum of the first two slack variables is equal to the sum of the third and fourth
slack variables. Argue that the slack variables cannot all be non-basic in any
dictionary of the simplex method. [Hint: Consider the first four rows of AB,
the basic part of “big A” corresponding to a basis B.]
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Exercise 3.10. Consider the LP for the matrix game:

A =

[
2 −5
−4 3

]
,

namely

max v subject to

2p1 − 4p2 ≥ v,
−5p1 + 3p2 ≥ v,

p1 + p2 = 1

p1, p2 ≥ 0

Previously we added constants to each enty of A to make simplifying as-
sumptions on the linear program. Here we ask if it is so bad just to leaves
things as they are.

(1) Write the above linear program in standard form, where v is replaced
by v1 − v2 where v1, v2 ≥ 0 (since we don’t know if v is positive or
negative), and where p1 + p2 = 1 is replaced by the two inequalities:

p1 + p2 ≤ 1 and − p1 − p2 ≤ −1.

(2) Argue that this linear program is feasible and bounded, and therefore
the simplex method will find the optimal value.

(3) Write down the “big A” matrix expressing the linear equations sat-
isfied by the decision variables and the slack variables.

(4) What is the “big A” column corresponding to v1, and the column
corresponding to v2? Argue that v1 and v2 can never both be basic
variables in any dictionary given by the simplex method.

(5) Say that v1 is a basic variable in some dictionary, and hence v2 is
non-basic. What will the v1 row look like in the dictionary?

(6) Consider the two slack variables corresponding to the inequalities

p1 + p2 ≤ 1 and − p1 − p2 ≤ −1.

What is the sum of these two slack variables? Argue that at least
one of these two slack must be basic in any dictionary that can arise
in the simplex method.

(7) Generalize this discussion to any linear program where:
(a) some variables are not known to be positive (or negative), and

are written as the difference of two variables; and
(b) some constraints are linear equalities, and hence are written as

two inequalities.

Exercise 3.11. Consider a weighted bipartite matching problem between
two people and two tasks, where the utility matrix cij has all positive entries.

(1) Write down a linear program for this problem and argue directly
that at optimality each slack variable must equal zero.
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(2) Argue directly that all four slack variables cannot be nonbasic in any
dictionary of the simplex method. [Hint: Consider Exercise 3.9.]

(3) Argue that, on the basis of the previous part, that all four decision
variables cannot be basic in any dictionary.

(4) Argue that, on the basis of the previous parts, the final dictionary
will have two of the xij equal to one, and the other two equal to
zero.

Exercise 3.12. Consider a weighted bipartite matching problem between
two people and two tasks, where the utility matrix cij is given by c11 = 8,
c22 = 9, c12 = 5, and c21 = 3. Since matchings between two people and two
tasks can only be done one of two ways, it is clear that x11 = x22 = 1 and
x12 = x21 = 0 is optimal; x12 = x21 = 1 and x11 = x22 = 0 is not optimal.

(1) Write down the complementary slackness conditions for the proposed
optimal solution x12 = x21 = 1 and x11 = x22 = 0 (which we know is
not optimal). Show that the four dual decision variables need only
satisfy two equations, and hence there is no unique dual solution.

(2) Show that any solution for the four dual decision variables leads to an
infeasible dual solution (i.e., at least one of the dual slack variables
must be negative).

Exercise 3.13. Consider a weighted bipartite matching problem between
two people and two tasks, where the utility matrix cij is given by c11 = 8,
c22 = 9, c12 = 5, and c21 = 3. Since matchings between two people and two
tasks can only be done one of two ways, it is clear that x11 = x22 = 1 and
x12 = x21 = 0 is optimal; x12 = x21 = 1 and x11 = x22 = 0 is not optimal.

(1) Write down the complementary slackness conditions for the proposed
optimal solution x11 = x22 = 1 and x12 = x21 = 0 (which we know
is optimal). Show that the four dual decision variables need only
satisfy two equations, and hence there is no unique dual solution.

(2) Find a dual solution (even though it is not unique) which satisfies
complementary slackness and is dual feasible (i.e., all the yi’s and
zi’s are non-negative, and they satisfy complementary slackness for
the above xi’s and wi’s).

Exercise 3.14. Consider the matrix game:

A =


1 36
4 25
9 16
16 9
25 4
36 1


(1) Show that for any i = 2, 3, 4, 5 we have that playing 50% of row i−1

and 50% of row i+ 1 is better than playing row i.

(2) Show that if ~f(b) denotes the b-th row of this game, then ~f(b) is a
convex (i.e., concave up) function of b.
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(3) What two rows will Alice play in “Alice plays a mixed strategy,”
based on your answers to the previous parts?

(4) Find Betty’s best mixed strategy.

Exercise 3.15. Consider the matrix game:

A =


−1 −36
−4 −25
−9 −16
−16 −9
−25 −4
−36 −1


(1) Show that if ~f(b) denotes the b-th row of this game, then ~f(b) is a

concave down function of b.
(2) What two rows will Alice play in “Alice plays a mixed strategy,”

based on your answer to the previous part?
(3) Find Betty’s best mixed strategy.

Exercise 3.16. Explain each of the following principles of the revised sim-
plex method (they are all discussed in this article):

(1) We do not need to compute the whole dictionary: assume we want
to compute the entire ζ row to choose which variable enters, but
then compute constants of the dictionary and only the column of an
entering variable, which computations are involved? [Hint: look at
Theorem 1.5.]

(2) The order of multiplcation matters: Theorem 1.5 has a term
~cTBA

−1
B AN . In which order do we multiply these terms?

(3) How are eta matrices used in the revised simplex method? Specif-
ically, consider the cost in terms of FLOPS (FLOating Point Op-
erations): if to refactorize A−1B requires mα FLOPS (where m is
the number of basic variables), where α ranges between 1 and 3 de-
pending on the problem, and each multiplication by an eta matrix
requires m FLOPS, argue that to refactorize every s steps would
involve an average of order mαs−1 FLOPS (for the refactorization)
and order ms FLOPS for the eta matrix multiplications. Then argue
that the optimal value of s is m(α−1)/2.

Solutions to some problems appearing two pages from now
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Solutions to some problems appear starting on the next page
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Here we give brief solutions to some problems in the article on Eta Matri-
ces and Applications. This term problems 1,2,4–7,9 were assigned; here we
give brief solutions to 10, 14–16; the rest of the problems are similar to oth-
ers found here or in the homework (12 and 13 are complementary slackness
problems).

3.10 The point of this problem is to see that while replacing v by v1− v2
(when v can be positive or negative) with v1, v2 ≥ 0 (needed for standard
form) might look like we now have twice the work since one decision variable,
v, has been replaced by two decision variables, v1, v2. However, v1 and v2
start out as nonbasic in the first dictionary, and we make the following
claims:

(1) It is impossible for v1, v2 to be basic in any dictionary: for then AB
would have a v1 column that is the same as the v2 column except
with signs reversed; in the case AB would have these two columns
summing to zero, and hence AB would have a zero determinant,
which is impossible.

(2) It is possible for v1 to be basic and v2 to be nonbasic: in this case v2
only appears in the v1 row, with a +1 cofficient (we saw this in class
in two different ways), and so we can forget (at least temporarily)
about v2.

(3) It is possible for v2 to be basic and v1 to be nonbasic: this is similar
to the last case.

(4) It is possible for v1, v2 to be nonbasic; in that case the coefficients of
v1 in the dictionary are the same as those for v2 except the signs are
reversed. So once we know the coefficients for v1, we automatically
get those for v2.

In all cases figuring out how v1 and v2 are involved in a dictionary really
only requires doing so for one of the variables. Hence this is only slightly
more work than if we had v instead of v1 and v2; this is hardly twice the
work.

A similar remark is true for an equality such as p1 + p2 = 1 which must
be replaced by two inequalities in standard form. Although we get two slack
variables,

w1 = 1− p1 − p2 and w2 = −1 + p1 + p2

(instead of one slack variable), again it is not really twice the work. We see,
for analogous reasons as in the previous paragraph, that w1 and w2 cannot
both be nonbasic; furthermore, since w1 = −w2, when both w1 and w2 basic,
then the rows for w1 and w2 are the same except with opposite signs; and
when w1 is basic and w2 nonbasic (and similarly for vice versa), the row for
w1 must simply read: w1 = −w2.
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3.12 The dual linear program to

max 8x11 + 5x12 + 3x21 + 9x22 subject to

x11 + x12 ≤ 1,

x21 + x22 ≤ 1,

x11 + x21 ≤ 1,

x12 + x22 ≤ 1,

x11, x12, x21, x22 ≥ 0

has dual decisions variables y1,row, y2,row, y1,col, y2,col for the constraints, in
order, and has constraints

8 ≤ y1,row + y1,col,

5 ≤ y1,row + y2,col,

3 ≤ y2,row + y1,col,

9 ≤ y2,row + y2,col

which respectively correspond to x11, x12, x21, x22. Since the primal slack
variables are all zero in optimality, we cannot draw any direct conclusions
about the dual decision (y) variables. Since x12 = x21 = 1 in this proposed
solution, we can conclude that

5 = y1,row + y2,col and 3 = y2,row + y1,col.

There are many solutions to these equation. However any such solution
cannot be (dual) feasible, since these equations require

8 = 5 + 3 = y1,row + y2,col + y2,row + y1,col,

but in feasibility we must also have

8 ≤ y1,row + y1,col,

9 ≤ y2,row + y2,col,

and hence
17 ≤ y1,row + y1,col + y2,row + y2,col

which contradicts the fact that the right-hand-side must equal 8.
Hence, although complementary slackness gives us infinitely many possi-

ble values for the dual decision and dual slack variables, none of them can
be feasible.

3.14 Consider the matrix game:

A =


1 36
4 25
9 16
16 9
25 4
36 1


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(1) Show that for any i = 2, 3, 4, 5 we have that playing 50% of row i−1
and 50% of row i+ 1 is better than playing row i.

Answer: For i = 2 this amounts to

(.5)[1 36] + (.5)[9 16] = [5 26] > [4 25].

For other i we do a similar calculation.
(2) Show that if ~f(b) denotes the b-th row of this game, then ~f(b) is a

convex (i.e., concave up) function of b.
Answer: We see that

~f(b) = [b2 (7− b)2] = [b2 49− 14b+ b2].

Since both entries are b2 plus linear functions of b, we have

d

db
~f(b) = ~f ′′(b) = [2 2]

which is positive, of ~f(b) is convex (concave up).
(3) What two rows will Alice play in “Alice plays a mixed strategy,”

based on your answers to the previous parts?

Answer Since ~f(b) is convex, the Alice will play some combina-
tion of the top and bottom rows.

(4) Find Betty’s best mixed strategy.
Answer From the previous part, Alice and Betty are essentially

playing the matrix game [
1 36
36 1

]
Since this matrix has a duality gap (of 35), we solve[

1 36
36 1

] [
q1
q2

]
=

[
v
v

]
, q1 + q2 = 1,

which yields q1 = q2 = 1/2.

3.15 Consider the matrix game:

A =


−1 −36
−4 −25
−9 −16
−16 −9
−25 −4
−36 −1


(1) Show that if ~f(b) denotes the b-th row of this game, then ~f(b) is a

concave down function of b.
Answer: We see that

~f(b) = [−b2 − (7− b)2] = [−b2 − 49 + 14b− b2].
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Since both entries are −b2 plus linear functions of b, we have

d

db
~f(b) = ~f ′′(b) = [−2 − 2]

which is negative, and hence ~f(b) is concave down.
(2) What two rows will Alice play in “Alice plays a mixed strategy,”

based on your answer to the previous part?

Answer: Since ~f(b) is concave down, we know that Alice will

play some mix of two adjacent row, and if the values of ~f(b) lie on
both sides of the line x = y, then we choose the two b values that

give ~f(b) closest to this line.
By inspection we can see that [−9 − 16] and [−16 − 9] are the

two closest.
Alternatively, we can see that ~f(b) traces out a curve when b

takes real values between 1 and 6, and ~f(b) intersects the line x = y
precisely when

−b2 = −(7− b)2

which happens precisely when b = 3.5. Hence the nearest integer b
values, representing rows 3 and 4, are indicate the rows that Alice
will play.

(3) Find Betty’s best mixed strategy.
Answer From the previous part, Alice and Betty are essentially

playing the matrix game[
−9 −16
−16 −9

]
,

and we similarly solve this 2×2 matrix game to see that Betty plays
[1/2 1/2].

3.16 Explain each of the following principles of the revised simplex
method (they are all discussed in this article):

(1) We do not need to compute the whole dictionary: assume we want
to compute the entire ζ row to choose which variable enters, but
then compute constants of the dictionary and only the column of an
entering variable, which computations are involved? [Hint: look at
Theorem 1.5.]

Answer: According to Theorem 1.5, we can compute the ζ row,
and only the column of coefficients in −A−1B AN~xN corresponding to

a single entering variable xi; hence we need only compute A−1B Ai,
where Ai is the column of “big A” corresponding to xi. (We also

need to compute A−1B
~b or find it somehow.) So the real savings

is in computing only the part of −A−1B AN~xN corresponding to the
entering variable xi.
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(2) The order of multiplcation matters: Theorem 1.5 has a term
~cTBA

−1
B AN . In which order do we multiply these terms?

Answer: Since ~cB is a row vector (of dimension 1×m), we mul-
tiply this by A−1B , which again yields a row vector; this vector we
multiply by AN . The first multiplication of a 1×m row vector times
an m ×m matrix (when A−1B is a general matrix) takes time order
m2; the second multiplication (a 1×m times an m×n matrix) takes
time order mn.

If we first multiplied A−1B times AN , in general this would take
time m2n, which would be much more expensive.

(3) How are eta matrices used in the revised simplex method? Specif-
ically, consider the cost in terms of FLOPS (FLOating Point Op-
erations): if to refactorize A−1B requires mα FLOPS (where m is
the number of basic variables), where α ranges between 1 and 3 de-
pending on the problem, and each multiplication by an eta matrix
requires m FLOPS, argue that to refactorize every s steps would
involve an average of order mαs−1 FLOPS (for the refactorization)
and order ms FLOPS for the eta matrix multiplications. Then argue
that the optimal value of s is m(α−1)/2.

Answer: To refactorize ever s steps means that the cost, mα, is
averaged over s steps, for mα/s per step. Each step from s/2 to s
involves at least s/2 Eta matrices, for a cost of at least (s/4)m per
step, since the Eta matrix multiplication takes order m FLOPS per
step. The optimal value of order sm+mα/s is achieved when these
two terms balance, meaning that sm = mα/s, up to some constant
multiple, so that s2 is of order m1+α.
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