
(DRAFT OF) APPLICATIONS IN LINEAR ALGEBRA FOR

MATH 223, UBC, SPRING 2019

JOEL FRIEDMAN

Abstract. This article gives a number of applications of linear algebra with-

out assuming any knowledge of linera algebra (beyond solving a system of two
linear equations of two unknowns, typically done in high school). It will be

used in the first few weeks of Math 223 to motivate linear algebra; it will also

be used throughout the course as a source of examples.

Contents

0. Introduction 2
0.1. Notation 3
0.2. The Complex Numbers 4
0.3. Summation Notation 4
0.4. Product Notation 4
0.5. Proofs By Induction 5
0.6. (Additional) Exercises 5
1. Least Squares Curve Fitting 8
1.1. Linear Regression 8
1.2. Remarks on the Formulae for Linear Regression 9
1.3. Linear Regression and 2× 2 Systems 9
1.4. Manipulating the Data 9
1.5. Related Measurements of Fit 10
1.6. Completing the Square Versus Differentiation 10
1.7. Derivation of Best Fit 10
1.8. Least Squares as a Projection 11
1.9. More General Least Squares 11
2. Linear Algebra Without Linear Algebra 12
2.1. n× n Systems 12
2.2. Exact Polynomial Fitting 12
2.3. Parabola Fitting Example 13
2.4. Calculus Example 13
2.5. The Uniqueness-Homogeneous Principle 14
3. Sums of Powers 17
3.1. Easy Derivation of the Sums of Squares Formula 18
3.2. Sums of Binomial Coefficients 20
3.3. Sums of Powers 22
3.4. LINEARITY AND ABSTRACT VECTOR SPACES 22

Date: Tuesday 22nd January, 2019, at 09:40(get rid of time in final version).
2010 Mathematics Subject Classification. Primary .
Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

3.5. The Operators D,S and Some Operators from Calculus 23
3.6. Changing From Binomials to Powers and Vice Versa 25
3.7. Stirling Numbers 26
3.8. Integrals of Even Powers of cos(x) 26
4. Fibonacci Numbers and Recurrence Equations 27
4.1. Properties of Fibonacci Numbers 27
4.2. Solution to the Fibonacci Recurrence by Guessing and Solving a 2× 2

System 27
4.3. Solving General Recurrence Relations 28
4.4. Recurrences and Matrix Powers 29
4.5. (Additional) Exercises 29
5. Moving Averages (A Bit of Time Series) 29
6. Linearity in Power Series 30
6.1. Trigonometric Functions 30
6.2. Taylor Series 31
6.3. Linearity In Differential Operators 31
7. Classical PageRank and Markov Chains 31
7.1. Simplified PageRank 32
7.2. Markov Matrices 34
8. Graphs, Constrained Data, and Regular Languages 35
8.1. (2, 7)-Constrained Data 35
8.2. More Details on the Motivation Behind (2, 7)-Constrained Data 35
8.3. The Number of (2, 7)-Constrained Words 35
8.4. Directed Graphs as Modeling (2, 7)-Strings 35
8.5. Regular Languages 37
9. Error Detection/Correction in Binary Data and ISBN Numbers 37
9.1. Simple Parity Check 37
9.2. ISBN Numbers 38
9.3. Error Correcting Codes 38
10. Motivation from Graphics 40
References 40

Copyright: Copyright Joel Friedman 2018. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

THIS ARTICLE IS CURRENTLY IN DRAFT FORM. SOME MISTAKES IN
THIS ARTICLE WILL ONLY BE CORRECTED IN CLASS.

0. Introduction

For the first few weeks of Math 223 course (Spring 2019) we describe some
examples and applications of linear algebra.

We are inspired by Prof. Klaus Hoechsmann, who began his linear algebra courses
with a two-week introduction covering the entire course content in the special case
of 2× 2 matrices; this way the students would understand part of the “big picture”
of linear algebra before starting with the technicalities. Our particular fascination
with linear algebra is its diversity of applications, so we begin will begin Math 223
with some representatative applications; this is another way to get the “big picture.”

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 3

In addition, Prof. Kai Behrend suggested that we provide more applications to
supplement the current Math 223 textbook.

These notes do not assume any knowledge of linear algebra beyond the ability
to solve 2 × 2 linear systems. Terms in italics, such as kernel or quadratic form,
are terms that we will eventually define precisely and study theoretically in Math
223; in this article we don’t require the reader to understand these terms. Some
of the exercises in these notes ask the reader to type some square matrices (arrays
of numbers) into linear algebra software and take powers of the matrices; we don’t
assume that the reader knows how to multiply matrices, rather we explain what
these powers mean in practical terms.

At the end of a phrase or sentnence, we use the term “(exercise)” to mean that
we intend to create an exercise (with precise statements and possibly some hints)
based on what is written; we use the term “(why?)” to suggest that the reader
might be able to figure out why we claim is true. Some terminology we use, such as
linearity or nice (e.g., sufficiently nice function) are purposely vague; much of this
vagueness will be clarified later in Math 223.

These notes have a lot of applications, too many to cover in two or three weeks;
some of these applications will be covered later in the course, to illustrate concepts
in linear algebra as we cover them.

At this point these notes are a work in progress; exercises and ma-
terial may be added throughout the course. Part of these notes are rather
skeletal, and some details may only be given in class. In particular, many helpful
diagrams and examples may only be given in class. Also, some errors
in these notes may only be fixed in class; anyone not taking Math 223 is
welcome to read these notes (but should be aware of possible errors and incomplete
explanations).

Remarks on the current state of these notes:

(1) At present a number of sections or subsections have no material.
(2) Some exercises are interspersed in the main text; other additional exercises

appear at the end of the sections. Most likely I will add more exercises,
and some exercise numbers may change until I assign homework from
that section.

We finish this section with some preliminary notation and background.

0.1. Notation. We use R to denote the real numbers, and

N = {1, 2, 3, . . .}

to denote the natural numbers, and

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

to denote the integers, and the notation

Z≥0 = {0, 1, 2, . . .} .

Warning: Many computer science programming languages use Z≥0 for the natural
numbers, i.e., count starting from 0 (why?); many math and computer science texts
also use this convention.

4 JOEL FRIEDMAN

0.2. The Complex Numbers. There are many good introductions to the com-
plex numbers; the current Wikipedia does a good job, but there are more succint
expositions.

We use i to denote
√
−1; the complex numbers are formal combinations

C = { a+ bi | a, b ∈ R}.

I assume you know how to add, subtract, multiply, and divide complex numbers,
e.g.,

a+ bi

c+ di
= (a+ bi)

1

c+ di
= (a+ bi)

1 · (c− di)
(c+ di) · (c− di)

= (a+ bi)
c− di
c2 + d2

=

(
ac− bd
c2 + d2

)
+

(
bc− ad
c2 + d2

)
i .

Later in Math 223 we will use the fact that any nonzero complex number a+ bi
has a unique (polar) representation as reiθ for r > 0 and θ ∈ [0, 2π), i.e., 0 ≤ θ < 2π;
if

a+ bi = reiθ then (a+ bi)n = rneiθn

for any n ∈ Z. This is useful to know when a, b are fixed and n→∞ (or n→ −∞).

0.3. Summation Notation. If f(i) is a function of i ∈ Z (with values in C, Z, or
any values where there is a reasonable notion of addition), and a ≤ b are integers,
we use the notation

b∑
i=a

f(i) to denote f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(b);

in particular
a∑
i=a

f(i) = f(a).

At times it is useful to define the above summation when b < a; by convention,

a−1∑
i=a

f(i) = 0,

a−2∑
i=a

f(i) = −f(a− 1),

a−3∑
i=a

f(i) = −f(a− 1)− f(a− 2), · · ·

(why is this a reasonable definition?). The abstract idea allows us to extend many
common sequences of numbers backwards; this is useful in Subsection 3.1.

0.4. Product Notation. Similarly we write

b∏
i=a

f(i) = f(a)f(a+ 1) · · · f(b)

with

a−1∏
i=a

f(i) = 1,

a−2∏
i=a

f(i) =
1

f(a− 1)
,

a−3∏
i=a

f(i) =
1

f(a− 1)f(a− 2)
, · · ·

In these notes we prefer to avoid these summation and product notation whenever
reasonably possible, but this notation is at times both conceptually and notationally
better to use.

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 5

0.5. Proofs By Induction. A lot of facts we will use in our examples are theorems
that can easily be proven by induction.

Formally, induction works via the following principle: consider a set S ⊂ N for
which (1) 1 ∈ S, and (2) i ∈ S implies i+ 1 ∈ S. Then S = N.

Example 0.1. Let us prove that for all n ∈ N,

(1)

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

i.e.,

(2) 1 + 4 + 9 + 16 + 25 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Let S be the set of n ∈ N for which the above formula is true. Then (2) holds for
n = 1 (since 1 = 1(1 + 1)(2 + 1)/6); hence 1 ∈ S. Assuming that i ∈ S, i.e., that
(2) holds for n = i, we have

1 + 4 + 9 + · · ·+ i2 =
i(i+ 1)(2i+ 1)

6
;

adding (i+ 1)2 to both sides we have

1 + 4 + · · ·+ i2 + (i+ 1)2 =
i(i+ 1)(2i+ 1)

6
+ (i+ 1)2 =

(i+ 1)(i+ 2)(2i+ 3)

6

which is just (2) for n = i+ 1. Hence i ∈ S implies that i+ 1 ∈ S. It follows that
S, the set of n for which (2) holds, is all of N.

These types of “proof by induction” are often written informally, as proving
a theorem by proving the base case (i.e., 1 ∈ S), and the inductive hypothesis
(i ∈ S ⇒ i + 1 ∈ S). In Math 223, we will insist that proofs by induction are
written in the formal manner of Example 0.1.

0.6. (Additional) Exercises.
I am in the procdss of adding more exercises to this part and/or changing their

order; THE EXERCISE NUMBERS MAY CHANGE until I assign homework from
this part.

N.B. All proofs by induction must be written as follows: (1) they must begin
with “Let S ⊂ N be the set of n such that . . .” (2) must continue with “Let us
first show that 1 ∈ S: . . .” (3) must continue with “Let us next show that i ∈ S
implies that i+ 1 ∈ S: . . .” (4) must end with “Since 1 ∈ S and i ∈ S ⇒ i+ 1 ∈ S,
it follows that S = N; it follows that . . .” NO CREDIT WILL BE GIVEN TO
PROOFS THAT DO NOT FOLLOW THIS FORMAT.

Exercise 0.1. For n ∈ N, with n ≥ 2, n curling teams play one another in a
single elimination tournament. (In the first match some team plays some other;
the loser of the match is eliminated from the tournament; the winner survives and
continues in the tournament with the other n− 2 players.) Use induction to show
that for all n ∈ N, a single elimination tournament with n+1 terms will end with a
single winning team after n matches (no matter the order that the teams play one
another). [It is easy to prove this fact directly; the point of this exercise is to get
practice formally writing out proofs by induction. Make sure you use the formal
form of induction above.]

6 JOEL FRIEDMAN

Exercise 0.2. Use induction to show that for all n ∈ N

(3) 1 + 3 + 5 + · · ·+ (2n− 1) = n2

[It is easy to verify (3) by different means; the point of this exercise is to get practice
formally writing out proofs by induction. Make sure you use the formal form of
induction above.]

Exercise 0.3. Use induction to show that for all n ∈ N

(4) 1 + 23 + 33 + · · ·+ n3 =
n2(n− 1)2

4

[It is easy to verify (4) by different means; the point of this exercise is to get practice
formally writing out proofs by induction. Make sure you use the formal form of
induction above.]

Exercise 0.4. Fix x ∈ R. Show that for all n ∈ N we have

(5) (1− x)
(
1 + x+ · · ·+ xn

)
= 1− xn+1

[It is easy to directly verify (5); the point of this exercise is to get practice formally
writing out proofs by induction. Make sure you use the formal form of induction
above.]

Exercise 0.5.

0.5(a) Fix θ ∈ R. Use induction to show that for n ∈ N we have

(6) 2 sin(θ)
(
cos(0) + cos(2θ) + cos(4θ) + · · ·+ cos(2nθ)

)
= sin

(
(2n+ 1)θ

)
[Hint: You don’t have to know any trig; just use the identity

sin(α+ θ)− sin(α− θ) = 2 cos(α) sin(θ)

for appropriately chosen α.] [It is easy to directly verify (6); the point of
this exercise is to get practice formally writing out proofs by induction.
Make sure you use the formal form of induction above.]

0.5(b) Recall that

lim
θ→0

sin θ

θ
= 1

(when sin is measured in radians). Show by taking Riemann sums that for
any η ∈ R,

∫ η
0

cos(x) dx = sin(η) (when measuring angles radians).

Exercise 0.6. Let Fn denote the n-th Fibonacci number, i.e., F1 = 1, F2 = 1, and
for n ≥ 3 we have Fn = Fn−1 + Fn−2. Hence

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, . . .

(some texts will enumerate the Fibonacci numbers in slightly differing notation and
indexing).

0.6(a) Apply the formula Fn = Fn+2 − Fn+1 for n = 0,−1,−2, . . . ,−8 to derive
values for F0, F−1, . . . , F−8; guess a simple formula (i.e., write down a simple
formula for the pattern you see) for Fn when n is a negative integer, and
prove by induction that your guess is correct.

0.6(b) Compute FnFn+2−F 2
n+1 for n = 1, . . . , 5; guess a simple formula (i.e., write

down the pattern you see) for this expression, and prove by induction that
your guess is correct.

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 7

0.6(c) Compute FnFn+3−Fn+1Fn+2 for n = 1, . . . , 5; guess a simple formula (i.e.,
write down the pattern you see) for this expression, and prove by induction
that your guess is correct.

0.6(d) Compute FnFn+8 − Fn+1Fn+7 for n = 1, . . . , 5; you can write your answer
in terms of the Fibonacci numbers [by substituting Fn+7 + Fn+6 for Fn+8

and Fn + Fn−1 for Fn+1] rather than writing out the actual integer; guess
a simple formula (i.e., write down the pattern you see) for this expression,
and prove that your guess is correct.

0.6(e) Compute FnFn+100 − Fn+1Fn+99 for n = 1, . . . , 5; you can write your an-
swer in terms of the Fibonacci numbers [see the previous part] rather than
writing out the actual integer; guess a simple formula (i.e., write down the
pattern you see) for this expression, and prove that your guess is correct.

0.6(f) Prove by induction that if ξ+ = (1 +
√

5)/2 and ξ− = (1 −
√

5)/2, then

Fn = (ξn+ − ξn−)/
√

5. [Hint: first find the roots of x2 = x+ 1.]
0.6(g) Use the above formula to prove that for n ≥ 0, Fn is the integer nearest to

ξn+/
√

5.
0.6(h) Prove that the GCD (greatest common divisor) of Fn and Fn+1 is 1.

Exercise 0.7. Recall that the number of subsets of size k from a fixed set of n
elements is (

n

k

)
=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 1
=

n!

k!(n− k)!
,

where ! denotes the “factorial,” e.g., k! = k(k − 1) . . . 1.

0.7(a) Prove that for any n ∈ N we have that
∑n
m=1m = 1 + 2 + · · · + n equals(

n+1
2

)
; use induction on n.

0.7(b) Prove that for any n, k ∈ N we have that(
1

k

)
+

(
2

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
;

prove this by fixing an integer k and using induction on n.

Exercise 0.8. Let k ∈ N (i.e., k is a positive integer) and A1, . . . , Ak be finite
sets.

0.8(a) Prove that

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.
[Hint: each element of x ∈ A1 ∪ A2 is counted once on the LHS (left-hand
side). What about the RHS (right-hand side)? You may need to consider
a few cases.]

0.8(b) Prove that

|A1∪A2∪A3| = |A1|+ |A2|+ |A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+ |A1∩A2∩A3|.

0.8(c) Prove that for any m ∈ N that

m∑
j=0

(
m

j

)
(−1)j =

(
m

0

)
−
(
m

1

)
+

(
m

2

)
+ · · ·+ (−1)m

(
m

m

)
= 0

[Hint: you may use induction on m, or you may use the binomial theorem
(x+ y)m =

∑m
j=0 x

m−jyj
(
m
j

)
and cleverly choose x, y.]

8 JOEL FRIEDMAN

0.8(d) Show that

|A1 ∪A2 ∪ . . . ∪Ak| =
∑

0≤i≤k

|Ai| −
∑

0≤i1<i2≤k

|Ai1 ∩Ai2 |

+
∑

0≤i1<i2<i3≤k

|Ai1 ∩Ai2 ∩Ai3 | · · ·+ (−1)k|A1 ∩A2 ∩ . . . ∩Ak|.

[Hint: you can use part (3) of this exercise; or you can ignore part (3) and
use induction.]

Exercise 0.9. Let an be the number of strings of length n in {0, 1} such that each
0 must immediately follow and immediately precede a 1; examples of such strings
would be 11010111 and 1111, but not 110 or 1001.

0.9(a) Write out the values of an for n = 1, . . . , 6.
0.9(b) Prove that an = an−1 + an−2 for all n ≥ 3.
0.9(c) What is the capacity of {an}.
0.9(d) Show that {an} is a walk count: draw or describe the graph and the set of

beginning and of ending vertices.

Exercise 0.10. Let an be the number of strings of length n in {0, 1} such that each
0 must immediately follow and immediately precede a 1; examples of such strings
would be 11010111 and 1111, but not 110 or 1001.

0.10(a) Write out the values of an for n = 1, . . . , 6.
0.10(b) Prove that an = an−1 + an−2 for all n ≥ 3.
0.10(c) What is the capacity of {an}.
0.10(d) Show that {an} is a walk count: draw or describe the graph and the set of

beginning and of ending vertices.

1. Least Squares Curve Fitting

Least squares curve fitting is used to fit a model with some parameters to a set
of data points. A special case of this is often called linear regression, which we now
describe. This section also follows the style of Prof. Klaus Hoechsmann, in that it
mostly discusses only 2× 2 linear systems.

1.1. Linear Regression. Say that we are given “data” points (x1, y1), . . . , (xn, yn)
in the plane that do not lie on any line y = a+ bx; we want to find an a, b that is
“closest” to exactly fitting these data points: more precisely, we define the squared
error of a line y = a+ bx to these data points to be

E(a, b)
def
=

n∑
i=1

(yi − a− bxi)2,

and the least squares fit to be a pair a, b ∈ R that minimize E(a, b). We emphasize
that here the xi and yi are fixed, and a, b are variables. Note that E(a, b) ≥ 0 for
all a, b, and E(a, b) = 0 implies that yi = a+ bxi for all i (in which case y = a+ bx
is an “exact fit” to the data points). It is well known that E(a, b) is minimized at

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 9

the point (a, b) = (a∗, b∗) iff

na∗ +

(
n∑
i=1

xi

)
b∗ =

(
n∑
i=1

yi

)
(7) (

n∑
i=1

xi

)
a∗ +

(
n∑
i=1

x2i

)
b∗ =

(
n∑
i=1

xiyi

)
(8)

1.2. Remarks on the Formulae for Linear Regression. I discovered (7) and
(8) in a list of formulas at the back of a scientific calculator manual while in high
school (before scientific calculators were common), at a time when science classes
would ask us to fit straight lines to data points by “drawing a line that looked
reasonable.” Instead I used the above formulas; I also wondered why they held
(since they were in the back of a manual with no explanation, before the days of
the internet) and whether they held in greater generality. For example, you can
probably guess how to generalize these formulas from fitting with lines y = a+ bx
to fitting with parabolas y = a+ bx+ cx2 (useful to estimate the acceleration due
to the Earth’s gravity). In Math 223 we will learn that almost any reasonable guess
for a generalization of the above linear regression equations turn outs out to work
(i.e., to be true).

1.3. Linear Regression and 2 × 2 Systems. It is not hard to check by sub-
stitution that any 2 × 2 system, i.e., system of two equations with two unknowns
a, b,

αa+ βb = γ

δa+ εb = ζ

(where α, . . . , ζ are given) has a unique solution iff αε − βδ = 0 (regardless of the
values of γ, ζ). Hence (7) and (8) have a unique solution iff(

n∑
i=1

xi

)2

6= n

(
n∑
i=1

x2i

)
;

we later see that, by the Cauchy-Schwarz inequality, this condition fails to hold
when and only when x1 = x2 = . . . = xn; this fact should make sense intuitively
(exercise).

We will later see that a system of n × n equations has a unique solution iff the
determinant of the matrix of coefficients is nonzero, and that

det

[
α β
δ ε

]
= αε− βδ

is the special case of the 2× 2 system above.

1.4. Manipulating the Data. The remarkable fact about the above least squares
fit is that one you have computed the coefficients of (7) and (8), i.e.,

n,

n∑
i=1

xi,

n∑
i=1

x2i ,

n∑
i=1

yi,

n∑
i=1

xiyi,

it is easy to remove data points (e.g., points that are “outliers,” perhaps from
erroneous measurements) and add new ones; hence if you want to manipulate the

10 JOEL FRIEDMAN

data a bit, one can easily compute the new coefficients above and solve the new
2× 2 system.

1.5. Related Measurements of Fit. By contrast, it is sometimes more desirable
to find the best fit where E(a, b) is replaced with

E1(a, b)
def
=

n∑
i=1

|yi − a− bxi|

or

E∞(a, b) = Emax(a, b)
def
= max

i=1,...,n
|yi − a− bxi| ;

these can be solved with linear programming, but (1) this is a more difficult com-
putation, and (2) one cannot add or delete data points as easily as for E(a, b). The
least squares fit has a number of other desirable properties, such as having (1) an
interpretation in terms of a simple of projection (see below) with nice properties,
and (2) a simple way to compute intervals of confidence for the values of a, b when
the data points are viewed as measurements of points that are truly on a line but
subject to errors in measurement. For this reason, the least squares is more popular
that the best E∞ fit (a.k.a. Chebyshev fit) or best E1 fit.

1.6. Completing the Square Versus Differentiation. In the next subsection
we will use the fact that if α, β, γ ∈ R with α > 0, then the function f : R → R
given by f(a) = αa2 + βa + γ attains its minimum value when and only when
a = β/(2α); this can be seen by writing

f(a) = α
(
a− β/(2α)

)2
+ C, C = γ − β2/(4α)

where C is a constant depending on α, β, γ, or by differentiating f , i.e., computing
f ′(a) = 2αa + β and setting f ′(a) = 0 (and realizing that f is a parabola “facing
upwards”).

We will also allude to the related fact that

g(a, b)
def
= αa2 + βab+ γb2

is non-negative for all a, b ∈ R if α > 0 and C above is non-negative (we call such a
purely quadratic function positive semidefinite, and later in Math 223 we will study
such quadratic functions systematically).

1.7. Derivation of Best Fit. We now derive (7) and (8) based on some assump-
tions. First notice that

E(a, b)
def
=

n∑
i=1

(yi−a−bxi)2 = a2n−ab2
∑

xi+b
2
∑

x2i −a2
∑

yi−b2
∑

yixi+C

where C =
∑
y2i is a constant independent of a, b and hence unimportant when

minimizing E. Now assume that (a∗, b∗) is a local minimum of E(a, b). Then the
function f(a) = E(a, b∗) has a local minimum at a∗, and hence

f ′(a) = 2na− 2
∑

xib
∗ − 2

∑
yi

satisfies f ′(a∗) = 0 (alternatively one can avoid differential calculus by completing
the square, as done in the previous subsection). This implies (7). One similarly
considers the function g(b) = E(a∗, b) and derives (8).

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 11

The assumption that E(a, b) has a minimum value is not justified above; we will
understand this when we discuss quadratic forms; however, in the above case, where
we have two variables a, b, the quadratic part of E(a, b) is

a2n− ab2
∑

xi + b2
∑

x2i ;

and it is not hard to see, by scratch, that this quadratic form is necessarily positive
semidefinite; the general theory of quadratic forms will tell us that E(a, b) has a
minimum value that is attained either at a single point or a line in R2.

1.8. Least Squares as a Projection. When we discuss projections, we will in-
terpret the linear regression above as projecting the vector

~y =

y1...
yn

(in Rn) onto the line or plane in Rn spanned by the vectors

~1 =

1
...
1

 , ~x =

x1...
xn

 .
In this case (7) and (8) are viewed as the normal equations

(~1 ·~1) a+ (~1 · ~x) b = ~1 · ~y

(~x ·~1) a+ (~x · ~x) b = ~x · ~y

We will understand that these equations have a unique solution iff ~1 and ~x are
linearly independent, in which case ~1 and ~x span a plane; otherwise ~1 and ~x span a
line, and the above equations in a, b have infinitely many solutions.

1.9. More General Least Squares. The great news about linear regression is
that all this generalizes to any way of fitting data points (x1, y1), . . . , (xn, yn) to a
general linear model

y = a1f1(x1) + · · · amfm(xm)

where f1 = f1(x), . . . , fm = fm(x) are arbitrary (!) functions of x. This includes
models such as

y = a+ bx+ cx2, y = a+ bex, y = a+ b sin(x) + c cos(x), etc.

Similarly, if we have data points (x1, y1, z1), . . . , (zn, xn, yn) and we model z as
a function of x, y,

z = a1g1(x, y) + · · ·+ amgm(x, y)

the least squares theory goes through to find a1, . . . , am that minimize

E(a1, . . . , am)
def
=

n∑
i=1

(
zi − a1g1(xi, yi)− · · · − amgm(xi, yi)

)2
.

12 JOEL FRIEDMAN

2. Linear Algebra Without Linear Algebra

In Math 223 we will occasionally apply “linear algebra without linear algebra.”
A good example is the following:

(1) it is easy to show that any polynomial of degree n that has at least n + 1
distinct real roots must be the zero polynomial (by factoring the polynomial
or using Rolle’s Theorem; exercise);

(2) in view of (1), the principles of linear algebra imply that any n + 1 data
points (x0, y0), . . . , (xn, yn) with distinct xi can be fitted with a unique
polynomial of degree n.

We call this “linear algebra without linear algebra” because we are reaching a
conclusion (based on theorems in linear algebra) without seeming to make an ac-
tual computation (with the numbers or matrices involved in the linear equations
involved).

The above theorem about fitting with polynomials is called Lagrange interpola-
tion and there is a lot to say about this; in particular, Lagrange interpolation is a
good example of models that behave poorly due to having too many parameters).

Let us describe this principle in a little more detail.

2.1. n × n Systems. In Math 223 we will learn that the following generalization
of Subsection 1.3 holds: for any system of n linear equations in n unknowns,

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
... =

...
an1x1 + an2x2 + · · · + annxn = bn

the question of whether or not the above system has a unique solution depends
only on the aij and not on the bi.

[The specific condition on the aij is not important to us in this article, but is of
fundamental importance in Math 223 and can be stated in many equivalent ways,
involving a determinant or invertibility or rank or kernel (etc.) of an associated
matrix.]

In class we will give some 2× 2 systems as examples, such as

x + 2y = b1
x + 3y = b2

which has a unique solution for any b1, b2 ∈ R, and

x + 2y = b1
2x + 4y = b2 , e.g.

x + 2y = 5
2x + 4y = 10 ,

x + 2y = 5
2x + 4y = 11

which, depending on the constants, either have no solutions or infinitely many.

2.2. Exact Polynomial Fitting. If we seek to fit n + 1 data points
(x0, y0), . . . , (xn, yn) with a polynomial of degree n, i.e., with y = a0 + a1x +
· · ·+ anx

n, then this amounts to n+ 1 equations in the n+ 1 variables a0, . . . , an,
specifically

a0 + a1xi + a2x
2
i + · · ·+ anx

n
i = yi

for i = 0, . . . , n. Notice that here the ai are variables and the xi, yi are given, which
makes things look a bit strange in terms of our usual notation for linear equations.

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 13

A similar remark holds for any set of n+1 data points to be fitted with a function
y = a0f0(x)+· · ·+anfn(x) for arbitrary functions f0, . . . , fn, but the constraints on
the xi may be more complicated than that they merely be distinct (depending on
f0, . . . , fn): indeeed, consider fj(x) = sin(2πjx) and x0, . . . , xn being any collection
of distinct integers; then fj(xi) = 0 for all i, j.

2.3. Parabola Fitting Example. Say we are trying to find a parabola through
the points (2, 3), (4, 5), (6, 9); i.e., we are looking for a polynomial of degree at most
two, p(x) = a0 + a1x+ a2x

2 with a0, a1, a2 ∈ R and

p(2) = 3, p(4) = 5, p(6) = 9.

This amounts to the linear equations:

a0 + 2a1 + 22a2 = 3
a0 + 4a1 + 42a2 = 5
a0 + 6a1 + 62a2 = 9

The theorem on linear systems (that we will prove later in this course) tells us that
there exists a unique solution iff (if and only if) the corresponding homogeneous
system

a0 + 2a1 + 22a2 = 0
a0 + 4a1 + 42a2 = 0
a0 + 6a1 + 62a2 = 0

has a unique solution (which would have to be a0 = a1 = a2 = 0). But any solution
to the homogeneous system means that q(x) = a0 + a1x + a2x

2 would have three
distinct roots, namely x = 2, 4, 6; the only polynomial with three distict roots is
the zero polynomial.

2.4. Calculus Example. Formulas for indefinite integrals look like∫
x2 dx =

x3

3
+ C,

∫
cos(x) dx = sin(x) + C

where C is a constant. The reason that we need to add a C can be viewed with an
analogue to homogeneous systems. Let us give an example.

The function f(x) = (x3/3) + 100 is a solution of the equation

d

dx
f = x2.

Given one solution f(x) = (x3/3)+100 to the above equation, we can find all other
solutions, g = g(x), as follows: if

d

dx
g = x2 =

d

dx
f

then
d

dx
(g − f) = 0.

We easily see that if h = h(x) satisfies

d

dx
h = 0

14 JOEL FRIEDMAN

then h = C is a constant. It then follows that g−f above equals a constant. Hence
given a solution f = f(x) to any “linear equation”

d

dx
f = x2,

all other solutions are given as f(x) + C.
Note that it may not be so easy to solve a differential equation, such as

d

dx
f = sin(4x+ 3)

√
x3 − 5 ee

1/x

+ cos
(
1/(x− 4)2

)
;

so while the existence of a solution to a differential equation may not be easy to
find, the question of uniqueness or, more generally, finding all solutions from a
single solution tends to be a much easier question, at least if the equation is linear.

2.5. The Uniqueness-Homogeneous Principle. Rather than begin with the
definition of a real vector space (e.g., page 15 of the textbook by Jänich), we want
to see why we need them. To present an abstraction of the principle of homogenous
equations above, we consider a map of sets

L : S → T .

For example

(1) S = T = R2 (i.e. the set of pairs of real numbers), and L takes (x, y) to
(x+ 2y, 2x+ 4y);

(2) D is the difference operator, taking a function f : N → Z to the function
Df given by

(9) (Df)(n) = f(n+ 1)− f(n);

here S = T is the set of functions N→ Z;
(3) the operator D defined by (9), but acting on S = T on the functions

Z → Z, Z → R, etc.; D as it acts on S = T = Poly≤3(R) (denoted P3

in the textbook by Jänich) or from S = Poly≤3(R) to T = Poly≤7(R) or
T = Poly≤2(R) (pedantically, these various instances of D are different
because their domain and/or codomains are different);

(4) the operator d/dx (differentiation) from S being the differentiable functions
R→ R to the set T of functions R→ R

(5) the examples in the exercises below;
(6) we will not allow non-linear functions L between linear (or vector) spaces

such as S, T in the above examples.

When we solve an equation

L(s) = some given element of T ,

we want to determine if such a solution s—if it exists—is unique; more generally,
given a solution s, we want to know all solutions to the above equation. Let us
proceed carefully.

We want to know when s1, s2 ∈ S satisfy

L(s1) = L(s2),

which is an equation in T (perhaps we know s1 and we want to find all s2 that satisfy
this equation, but this is not important here). We wish to have a “subtraction in
T” that allows us to write

L(s1)− L(s2) = L(s2)− L(s2),

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 15

and we want to be able to rewrite this as

L(s1 − s2) = L(s1)− L(s2) = L(s2)− L(s2) = 0T ,

which requires having (1) a zero element of T , 0T , with respect subtraction, (2) a
“subtraction in S,” and (3) L has to respect subtraction in S and T in the sense
that

L(s1 − s2) = L(s1)− L(s2).

Given all this we define the kernel or nullspace of L to be

ker(L) = {s ∈ S | L(s) = 0T },

which is the analogue of the “homogeneous form of system of equations,” and we
have

L(s1) = L(s2) ⇐⇒ s1 − s2 ∈ ker(L).

To summarize, the above relies on subtraction operations in S, T that work in
the usual way, and the assumption that L respects this operation.

In linear algebra over R, we make the additional assumption that the elements of
S, T can be multiplied (or scaled) by real numbers, and that L respects also scaling,
i.e.,

L(αs) = αL(s)

for α ∈ R and s ∈ S; again the above “respecting” condition involves scaling by α
in S (i.e., αs), and scaling by α in T (i.e., αL(s)). For example, we have

d

dx

(
201.9f(x)

)
= 201.9

d

dx

(
f(x)

)
,

and, more generally, for any α ∈ R we have

d

dx

(
αf(x)

)
= α

d

dx

(
f(x)

)
.

Introducing scaling (or scalar multiplication) by real numbers has many advantages.
This also gives us an “addition operation”

(10) s1 + s2
def
= s1 −

(
(−1)s2

)
which is often convenient. Furthermore, if s1, s2 ∈ ker(L) as above, then also
αs1 + βs2 ∈ ker(L) for any α, β ∈ R.

More generally, one can work with linear algebra over F, where F is something
other than R, such as N,Z,C,Q, Here are some considerations for what we
need from F:

(1) generally we want a multiplication and addition, including a −1 element
that functions as in (10);

(2) to speak of bases, basis exchange, and (Gaussian elimination to solve) equa-
tions, we need to be able to divide by any non-zero element;

(3) when we work with projections, we need to be able to take square roots;
(4) when we work with eigenvalues, we sometimes need to have any polynomial

with coefficients in F to have all its roots “in F.”

In practice we will take F = R, which has all the above properties except the last
one; when we need the last one, we will pass from R to C; R also has the advantage
that it is a natural setting for many applications.

16 JOEL FRIEDMAN

Exercise 2.1. Let L be the map taking a differentiable function, f , to the function
Lf defined by

Lf =
d

dx
f − 3f.

2.1(a) Show that for any C ∈ R, f(x) = Ce3x lies in ker(L).

2.1(b) Show that if f ∈ ker(L), then g(x)
def
= f(x)e−3x satisfies g′(x) = 0 for all x.

2.1(c) Show that if f ∈ ker(L), then f(x) must be of the form Ce3x for some
C ∈ R.

2.1(d) Find a polynomial of degree one, p(x) = a0 + a1x, such that Lp = x.
2.1(e) Find all solutions to the equation Lf = x.

Exercise 2.2. Let L be the map taking a function f : Z → R to the function L
defined by

(Lf)(n) = f(n+ 1)− 2f(n).

Show that f ∈ ker(L) iff f is given as

f(n) = C2n

for some C ∈ R.

Exercise 2.3. Let LFib be the map taking a function f : Z → R to the function
LFibf defined by

(LFibf)(n) = f(n+ 2)− f(n+ 1)− f(n).

2.3(a) Let F : Z→ R be the Fibonacci numbers, given by
(a) F (1) = F (2) = 1,
(b) F (n) = F (n− 1) + F (n− 2) for n ≥ 3,
(c) F (n− 2) = F (n)− F (n− 1) for n ≤ 0,

which yields the familiar sequence

. . . 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Show that F ∈ ker(LFib).
2.3(b) Show that for any r ∈ R, the function g : Z→ R given by g(n) = rn lies in

ker(LFib) iff r satifies

r2 − r − 1 = 0.

2.3(c) Let ξ+ = (1 +
√

5)/2 and ξ− = (1 −
√

5/2. Show that for any b0, b1 ∈ R
there are unique x, y with

x + y = b0
ξ+x + ξ−y = b1

2.3(d) Explain why every element, f , of ker(LFib) is uniquely determined by its
values f(0) and f(1).

2.3(e) Explain why every element, f , of ker(LFib) is uniquely expressible as

f(n) = x ξn+ + y ξn−

for some x, y ∈ R [Hint: show that there is a unique x, y satisfying this
formula for n = 0 and n = 1.]

2.3(f) Find a formula for the Fibonacci numbers, F (n), with n above.

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 17

Exercise 2.4. Let L be the operator taking a function f : Z → R to the function
Lf defined by

(Lf)(n) = f(n+ 2)− f(n).

2.4(a) Show that f ∈ ker(L) iff f is of the form

f =

{
a, if n is even, and
b, otherwise.

for some a, b ∈ R.
2.4(b) Show that for any r ∈ R, the function g : Z→ R lies in ker(L) iff r satifies

r2 − 1 = 0.

2.4(c) Show that f ∈ ker(L) iff f is of the form

f(n) = x+ (−1)ny

for some x, y ∈ R.

Exercise 2.5. Let L be the operator taking a function f : Z → R to the function
Lf defined by

(Lf)(n) = f(n+ 4)− f(n).

2.5(a) Say that f ∈ ker(L) and f(0) = 0, f(1) = 1, f(2) = 2, and f(3) = 3.
Describe f(n) for all n.

2.5(b) Show that for any r ∈ C, the function g : Z→ R lies in ker(L) iff r satifies

r4 − 1 = 0.

2.5(c) Show that the solutions to r4 − 1 = 0 are given by r = 1,−1, i,−i where
i ∈ C denotes

√
−1.

2.5(d) Show that f ∈ ker(L) iff f is of the form

f(n) = α+ βin + γ(−1)n + δ(−i)n

for some α, β, γ, δ ∈ R.

3. Sums of Powers

It is well known that

1 + 2 + · · ·+ n =

(
n+ 1

2

)
,(11)

1 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
;(12)

similarly one also has

(13) 1 + 2k + · · ·+ nk = pk(n)

where pk is a polynomial in n of degree k+ 1 (there are a number of ways to prove
this, see the exercises and the discussion below). It is not hard to see that pk(n)
is divisible by n(n+ 1) and has leading term nk+1/(k + 1) (which is equivalent to
the fact that

∫
xk = xk+1/(k + 1) + C). The exact formula is a bit of a mess, but

is well studied (type “Bernoulli numbers” into an internet search engine); in this
section we give one way to determine pk(n).

18 JOEL FRIEDMAN

3.1. Easy Derivation of the Sums of Squares Formula. In this subsection we
wish to outline an easy way to derive the sum of squares formula (12), at least a
conceptually easy way. We also point out that (12) is connected to the origins of
calculus over 2,000 years ago and Archimedes’ quadrature of the parabola (although
Archimedes used a different technique); the point being that from (12) one easily
sees that

∫
x2 dx = x3/3 + C.

We claim that if

(14) f(n)
def
=

n∑
i=1

k2,

then

(1) f(n) can be written as a polynomial of degree three, i.e., there is a degree
three polynomial, p(x) = a0 + a1x+ a3x

2 + a3x
3, with a0, . . . , a3 ∈ R and

a3 6= 0 such that f(n) = p(n) for all n ∈ Z; furthermore a3 = 1/3; and
(2) the polynomial p has roots at x = 0,−1/2,−1.

Once we have proven these claims, then by high school math,

p(x) = (1/3)x(x+ 1/2)(x+ 1) = x(x+ 1)(2x+ 1)/6

which proves (14). There are a number of subtle aspects of these claims, but once
you get used to them (say, by taking Math 223), these ideas will become intuitive.

The idea behind the Claim 2 is to consider to consider values of f(n) for n
negative and zero, and for n at the half-integer −1/2. We usually think of f(n) as
the sequence

f(1) = 12 = 1, f(2) = 12+22 = 5, f(3) = 12+22+32 = 14, f(4) = 30, f(5) = 55, f(6) = 91, . . .

but there is no reason not to extend this sequence backwards : since f(n) is given
by the recurrence

f(n+ 1) = f(n) + (n+ 1)2, f(1) = 1,

we can use f(n) = f(n+ 1)− (n+ 1)2 to compute

f(0) = f(1)− 12 = 1− 12 = 0,

f(−1) = f(0)− 02 = 0,

f(−2) = f(−1)− (−1)2 = 0− 1 = −1,

f(−3) = f(−2)− (−2)2 = −1− 4 = −5,

f(−4) = f(−3)− (−3)2 = −4− 9 = −14,

which gives us the two-sided sequence

. . . , −14, −5, −1, f(−1) = 0, f(0) = 0, f(1) = 1, 5, 14, . . .

We remark that this backwards extension of the sum of squares sequence actually
follows from (14) and the conventions on summation in Subsection 0.3.

The “backwards extension” of f allows us to view f as a function Z → Z, and
the calculation of f(0) and f(−1) shows that these are both zero. Furthermore, we
easily see that for all n ∈ Z

f(−n) = −f(−1 + n) .

Assuming that we have proven Claim 1 above,

q(x)
def
= p(−x) + p(−1 + x)

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 19

has infinitely many roots/zeros (q(n) = 0 for all n ∈ Z). It is not hard to see that
since p is a polynomial, also q is a polynomial (see below); since q has infinitely
many roots/zeros q is the zero polynomial. Hence

0 = q(−1/2) = p(−1/2) + p(−1/2) = 2p(−1/2)

and hence p(−1/2) = 0.
It remains to prove Claim 1 above; this can be done in a number of ways,

including our discussion in the next subsections.

Exercise 3.1. Let p(x) = a0 + a1x+ a3x
2 + a3x

3 with a3 = 1/3.

3.1(a) Show that q(x) = p(−x) is also a polynomial. What are its coefficients in
terms of a0, a1, a2? (Remember that a3 = 1/3).

3.1(b) Show that q(x) = p(−1 + x) is also a polynomial. What are its coefficients
in terms of a0, a1, a2? (Remember that a3 = 1/3).

3.1(c) Show that q(x) = p(−x) + p(−1 + x) is also a polynomial. What are its
coefficients in terms of a0, a1, a2? (Remember that a3 = 1/3).

Exercise 3.2.

3.2(a) We say that a polynomial p(x) = a0 + a1x+ a3x
2 + a3x

3 is odd if p(−x) =
−p(x). For which a0, a1, a2, a3 is p odd?

3.2(b) Show that if p(x) = a0 + a1x+ a3x
2 + a3x

3 is odd, then p(0) = 0.
3.2(c) If p(x) = a0 + a1x+ a3x

2 + a3x
3, and q(x) = p(x− 1/2) is odd, what can

you say about the value of q(0) = p(−1/2)? How does this relate to the
discussion in this subsection?

3.2(d) We say that a polynomial p(x) = a0 +a1x+a3x
2 +a3x

3 is even if p(−x) =
p(x). For which a0, a1, a2, a3 is p even?

3.2(e) Show that if p(x) = a0 + a1x + a3x
2 + a3x

3 is even, then p′(0) = 0 where
p′ shorthand for the derivative dp/dx.

Exercise 3.3. If f : Z→ R or f : R→ R, we say that

(1) f is odd if f(−x) = −f(x) for all x (in the domain of f).
(2) f is even if f(−x) = f(x) for all x (in the domain of f).

3.3(a) Show that if f : Z→ R or f : R→ R, then

f(x) =
f(x) + f(−x)

2
+
f(x)− f(−x)

2

expresses f as the sum of an even plus an odd function; in other words, show
that the first expression on the RHS (right-hand-side) is an even function,
and second expression on the RHS is an odd function, and that the above
equation is correct.

3.3(b) If f : Z→ Z, is

f(x) + f(−x)

2

always a function Z → Z? Either (1) show that it is, or (2) give a coun-
terexample or show that it isn’t always.

3.3(c) Show that if f is odd, then f(0) = 0.
3.3(d) Show that if f : R → R is odd and differentiable, then f ′ = df/dx is even;

show the same with “odd” and “even” exchanged.

20 JOEL FRIEDMAN

3.3(e) Show that if f is odd and infinitely differentiable (i.e., has derivatives to
all orders), then f(0), f ′′(0), f ′′′′(0), . . . are zero. Similarly show that if
f : R → R is even and infinitely differentiable, then f ′(0), f ′′′(0), . . . are
zero.

3.3(f) Show any function Z→ R or R→ R can be expressed uniquely as a sum of
an even plus an odd function.

Exercise 3.4. Say that we know that for any k ∈ N there is a polynomial of degree
k + 1, pk(n), such that

n∑
m=1

nk = pk(n)

for all n ∈ Z. Prove that

3.4(a) for all k ∈ N, pk(x) is divisible by x and x+ 1; and
3.4(b) for all even k ∈ N, pk(x) is also divisible by x+ 1/2.

3.2. Sums of Binomial Coefficients. Recall that the number of subsets of size
k from a fixed set of n elements is(

n

k

)
=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . 1
=

n!

k!(n− k)!
,

where ! denotes the “factorial,” e.g., k! = k(k − 1) . . . 1. Equivalently
(
n
k

)
is the

number of strings of x’s and y’s of length n with k x’s and n− k y’s; this is related
to the binomial theorem

(15) (x+ y)n = (x+ y)(x+ y) . . . (x+ y) =

n∑
k=0

xkyn−k
(
n

k

)
.

For this reason the
(
n
k

)
are called binomial coefficients. There are many ways to see

that

(16)

(
1

k

)
+ . . .+

(
n

k

)
=

(
n+ 1

k + 1

)
.

We remark that you could guess that (16) holds by looking at examples in the
first few rows of Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

or, more suggestively, the first few rows of its rotated form:

1 1 1 1 1 1 1 1 . . .
1 2 3 4 5 6 7 8 . . .
1 3 6 10 15 21 28 36 . . .
1 4 10 20 35 56 84 120 . . .
1 5 15 35 70 126 210 330 . . .

Let us give one way to see that (16); to simplify the computation, first consider
the case k = 2: note that(

n+ 1

3

)
−
(
n

3

)
=

(n+ 1)n(n− 1)

2 · 3
− n(n− 1)(n− 2)

2 · 3

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 21

= n(n− 1)
(n+ 1)− (n− 2)

2 · 3
= n(n− 1)

3

2 · 3
=
n(n− 1)

2
=

(
n

2

)
.

It follows that (
1

2

)
+ . . .+

(
n

2

)
=

((
2

3

)
−
(

1

3

))
+

((
3

3

)
−
(

2

3

))
+

((
4

3

)
−
(

3

3

))
+ · · ·+

((
n+ 1

3

)
−
(
n

3

))

=

(
n+ 1

3

)
−
(

1

3

)
=

(
n+ 1

3

)
.

We can show that (16) holds for any k ∈ N similarly, starting by showing that(
n+ 1

k + 1

)
−
(

n

k + 1

)
=

(
n

k

)
because we can write the left-hand-side above as

n(n−1) . . . (n−k+1)
(n+ 1)− (n− k)

(k + 1)!
= n(n−1) . . . (n−k+1)

k + 1

(k + 1)!
=
n(n− 1) . . . (n− k + 1)

k!
.

Exercise 3.5. The binomial theorem (15) for n = 4 says that

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y) = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Notice that there are four strings with three x’s and one y:

xxxy, xxyx, xyxx, yxxx

and six strings with two x’s and two y’s:

xxyy, xyxy, xyyx, yxxy, yxyx, yyxx.

Notice that in both cases above we have listed the strings in lexicographical order,
meaning the order they would appear in a dictionary (if they were words).

3.5(a) List all strings of one x and three y’s in lexicographical order.
3.5(b) List all strings of one x and four y’s in lexicographical order.
3.5(c) List all strings of two x’s and three y’s in lexicographical order.
3.5(d) Using your answer to the last part, describe—IN 15 WORDS OR

FEWER—an algorithm to list all strings of three x’s and two y’s in
lexicographical order; i.e., do not produce this list, but instead describe
how you would take the list you wrote in the last part as input and then
output a list of all strings of three x’s and two y’s.

3.5(e) Explain how the number of elements in some of your lists above relate to
the binomial theorem

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5y4 + y5.

Exercise 3.6. For any k ∈ N, prove (16) by induction on n (with n = 1 as the
base case).

Exercise 3.7. Prove (16) directly, by noting that its right-hand-size represents the
number of strings of n−k x’s and k+1 y’s, and using the fact that each such string
begins with some number of x’s before it encounters its first y.

22 JOEL FRIEDMAN

3.3. Sums of Powers. Let us give a method to find pk(n) in (13) for all k ∈ N.
Let us illustrate this method to find p1(n) and p2(n) (which we already know from
(11) and (12)). First note that for all m ∈ N,

(17)

(
m

1

)
= m;

for k = 1 (16) says that(
1

1

)
+

(
2

1

)
+ · · ·+

(
n

1

)
=

(
n+ 1

2

)
=

(n+ 1)n

2
,

and hence

1 + 2 + · · ·+ n =
(n+ 1)n

2
,

which implies (11), i.e., that p2(n) = (1/2)(n2 + n). Next note that for any m ∈ N(
m

2

)
=
m(m− 1)

2
= (1/2)m2 + (−1/2)m.

Summing over m ∈ [n] and using (16) with k = 2, we have(
n+ 1

3

)
= (1/2)p2(n) + (−1/2)p1(n)

which gives us a formula for p2(n) (since we know p1(n)). Similarly(
m

3

)
=
m(m− 1)(m− 2)

6
= (1/6)m3 − (1/2)m2 + (1/3)m

implies that (
n+ 1

4

)
= (1/6)p3(n)− (1/2)p2(n) + (1/3)p1(n)

which gives us a formula for p3(n) (since we know p1(n), p2(n)). We similarly can
find pk(n) for any k ∈ N.

Exercise 3.8. Show that pk(n) is a polynomial of degree k+ 1 whose leading term
is nk+1/(k + 1). Use this to show that

∫ a
0
xk dx = ak+1/(k + 1) by evaluating a

Riemann sum.

3.4. LINEARITY AND ABSTRACT VECTOR SPACES. In the previous
subsections, and in the subsection that follows, we are implicitly working with
basic concepts regarding linearity and abstract vector spaces. Let us give some
rough ideas.

First, there are a large number of abstract vector spaces, or simply vector spaces,
in the background. For example, we viewed the function

(18) f(n) =

n∑
m=1

m2

as an element of:

(1) the set of functions f : N→ N, which we denote Functions(N→ N) or NN;
(2) the set of functions f : N→ R, which we denote Functions(N→ R) or RN;
(3) the set of functions f : Z→ Z (understand summation with the conventions

of Subsection 0.3), which we denote Functions(Z→ Z) or ZZ; or
(4) the set of functions f : N→ R, which we denote Functions(N→ R) or RN;

we have also worked with polynomials, viewed as:

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 23

(1) the set of formal expressions p(x) = a0+a1x+ · · ·+a3x3 where a0, . . . , a3 ∈
R (i.e., polynomials of degree at most three over R), which we denote
Poly3(R) or, in the textbook by Jänich on page 82, P3;

(2) more generally, the set of formal expressions p(x) = a0 + a1x+ · · ·+ anx
n

where a0, . . . , an ∈ R (i.e., polynomials over R), which we denote Poly(R)
or P;

(3) the set of functions R→ R whose values are given by an element of Poly≤3;
(4) the set of functions f : N → N for which there is a formula f(n) = p(n)

where p is a polynomial over R, which can be viewed as

Functions(N,N) ∩ Poly ;

(5) etc.

If these distictions seem a bit pedantic (which they are . . .), just recall that we
started with a sequence 1, 5, 14, 30, 55, . . . and spoke about its values at negative
indices and at the index −1/2. The reason all of this works is that a polynomial
of degree 3 is determined by its values on Z or even just on N, or even just on
four distinct real values (exercise from high school algebra, or use Rolle’s Theorem
in calculus); for similar reasons a polynomial is determined by its values at any
infinite set of distict real numbers (exercise).

The key to some of what we do is that for a number of the above sets, if u, v are
any two elements and α, β ∈ R, then there is a sensible notion of a new element
αu + βv (e.g., adding of functions or polynomials and multiplying a function or
polynomial by a real number); we could also limit ourselves to α, β ∈ Z or α, β ∈
N, but we will eventually see that working with R has numerous advantages1;
sometimes it will be better to work in C. A key idea is that of linear transformations;
for example, if p = p(x) ∈ Poly3(R), then we used a number of maps L : Poly3(R)→
Poly3(R) that were linear in that

L(αp1 + βp2) = αL(p1) + βL(p2),

including the maps L given by

(1) (Lp)(x)
def
= p(−x),

(2) (Lp)(x)
def
= −p(−x),

(3) (Lp)(x)
def
= p(−1 + x),

(4) (Lp)(x)
def
= p(−x) + p(−1 + x) (which is a sum of two of the linear trans-

formation above),
(5) etc.

The key fact we need about (18) is that there is a p ∈ Poly≤3(R) such that
f(n) = p(n) for all n or, informally, “f = p”. In the next subsection we prove this.

3.5. The Operators D,S and Some Operators from Calculus.

Definition 3.1. If f ∈ Functions(N→ Z), i.e., f : N→ Z, we define the difference
of f to be the function

(Df)(n)
def
= f(n+ 1)− f(n);

we refer to D as the difference operator on functions Z→ Z, Z→ R, R→ R, etc.

1 Sometimes working with the rational numbers is good enough; when we want to talk of

projections, which invovle an inner product (such as the dot product), it is simplest to work with

R or C.

24 JOEL FRIEDMAN

Pedantically, the difference operator D is a different map or operator on each of
the above set of functions; generally, it does not cause confusion to use the same
letter D for each of these different situations.

Theorem 3.2. Consider the difference operator

(Df)(n)
def
= f(n+ 1)− f(n)

as it acts on functions f : Z→ R. Then for any f, g functions Z→ R we have

(1) for any n ∈ N we have

(19) (Df)(1) + (Df)(2) + · · ·+ (Df)(n) = f(n+ 1)− f(1);

(2) (19) holds for n ∈ Z, i.e.,

(20)

n∑
m=1

(Df)(m) = f(n+ 1)− f(1)

where we understand this sum for n ≤ 0 according to our conventions
(Subsection 0.3);

(3) there is a polynomial, p, of degree 3 with leading coefficient 1/3 such that
(Dp)(n) = n2;

[the above claims represent our way of finding a formula for 1 + 22 + · · ·+ n2, and
the claims below expand on this]

(4) if Df = 0 (the zero function), then f(n) = C is constant;
(5) if Df = Dg, then f = g + C for some constant C, meaning that f(n) =

g(n) + C;
(6) if f(n) =

(
n
k+1

)
, then (Df)(n) =

(
n
k

)
(meaning that Df is the function

taking n to
(
n
k

)
);

(7) if f, g : Z→ R and α, β ∈ R, then

D(αf + βg) = αD(f) + βD(g);

(8) if (Df)(n) = n2 for all n, then f(n) is a polynomial of degree 3;
(9) more generally, if there is a polynomial p such that Df = p, i.e., (Df)(n) =

p(n) for all n ∈ Z, then the values of f are given by a polynomial, and the
degree of this polynomial is (exactly) one more than that of f provided that
p 6= 0.

For the exercises below, we define an operator S as taking a function f and
returning a function Sf defined by

(Sf)(n)
def
= f(1) + f(2) + · · ·+ f(n) =

n∑
m=1

f(m)

(so either n ∈ N, or if n ≤ 0 and n ∈ Z we use the summation conventions of
Subsection 0.3). So if f(n) = n2, we have

(Sf)(n)
def
= 1 + 22 + · · ·+ n2 =

n(n+ 1)(2n+ 1)

6
,

or in shorthand:

S(n2) =
n(n+ 1)(2n+ 1)

6
.

We may write (19) and (20) as(
S(Df)

)
= f(n+ 1)− f(1).

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 25

This is a discrete analogue of the calculus theorem:∫ x=b

x=a

f ′(x) dx = f(b)− f(a).

Exercise 3.9. Compute the function (Df)(n) for all n ∈ N:

3.9(a) f(n) = (n− 1)2;
3.9(b) f(n) = (n− 1)n(2n− 1)/6;

3.9(c) f(n) =
(
n
4

) def
= n(n− 1)(n− 2)(n− 3)/24;

3.9(d) f(n) = −(1/3)n−1/2 and simplify your answer.
3.9(e) Show how (19) and the above computations yield the following formulas:

1 + 3 + 5 + · · ·+ (2n− 1) = n2,

1 + 22 + 32 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6,(
1

3

)
+

(
2

3

)
+ · · ·+

(
n

3

)
=

(
n+ 1

4

)
(1/3)1 + (1/3)2 + · · ·+ (1/3)n =

1− (1/3)n

2
,

In class we remarked that D, like differentiation, reduces the degree of a poly-
nomial by 1; however,

D
(
x

12

)
and

d

dx
x12

have “simple formula,” whereas

D
(
x12
)

and
d

dx

(
x

12

)
do not.

3.6. Changing From Binomials to Powers and Vice Versa. Here is another
way to look at the above method of finding pk(n). We have nice formulas to find
the sum over all m ∈ [n] of the functions(

m

1

)
,

(
m

2

)
,

(
m

3

)
,

(
m

4

)
· · ·

but we are more interested in such formulas for the functions

m, m2, m3, m4, . . .

Expanding the
(
m
k

)
gives formulas(

m
1

)
= m ,(

m
2

)
= (−1/2) m + (1/2) m2 ,(

m
3

)
= (1/3) m + (−1/2) m2 + (1/6) m3 ,(

m
4

)
= (−1/4) m + (11/24) m2 + (−1/4) m3 + (1/24)m4.

In Math 223 we will learn a general method for converting the other way (by
inverting a lower triangular matrix)—although this can be done by hand here—to

26 JOEL FRIEDMAN

obtain

m =
(
m
1

)
,

m2 =
(
m
1

)
+ 2

(
m
2

)
,

m3 =
(
m
1

)
+ 6

(
m
2

)
+ 6

(
m
3

)
,

m4 =
(
m
1

)
+ 14

(
m
2

)
+ 36

(
m
3

)
+ 24

(
m
4

)
.

So to sum over m ∈ [n] for the functions m,m2,m3, . . ., we use the above con-
version. So in view of the above table and (16) we have

(21)

∑n
m=1m =

(
n+1
2

)
,∑n

m=1m
2 =

(
n+1
2

)
+ 2

(
n+1
3

)
,∑n

m=1m
3 =

(
n+1
2

)
+ 6

(
n+1
3

)
+ 6

(
n+1
4

)
,∑n

m=1m
4 =

(
n+1
2

)
+ 14

(
n+1
3

)
+ 36

(
n+1
4

)
+ 24

(
n+1
5

)
.

Exercise 3.10. Verify that second formula in (21) gives our usual formula for∑n
m=1m

2.

Next we can use the fact that(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
(exercise) to write, to convert the above summation formulas to formulas in terms
of
(
n
k

)
instead of

(
n+1
k

)
; then we can use the expressions for

(
n
k

)
to convert to powers

of n.
The general idea of expressing the functions nk in terms of functions

(
n
k

)
—more

specifically as linear combinations of the
(
n
k

)
—and vice versa is known in linear

algebra as a change of basis.

3.7. Stirling Numbers. The particular coefficients in writing the
(
n
k

)
(for k =

1, 2, . . .) in terms of nk and vice versa are essentially known as Stirling numbers (of
the first and second kind; more specifically, the Stirling numbers are usually defined
as translating between the nk and the functions

n(k)
def
=

(
n

k

)
k! = n(n− 1) . . . (n− k + 1)

(some authors write this as n(k) and write n(k) for n(n + 1) . . . (n + k − 1)). In

this case the n(k) can be expressed in terms of the nk with integer coefficients
(since we don’t divide by k!) in a matrix with 1’s along the diagonal, and hence the
nk can be expressed in terms of the n(k) with integer coefficients (exercise, using
(I + L)−1 = I − L+ L2 − . . ., or by induction on k).

3.8. Integrals of Even Powers of cos(x). Another idea of change of basis is a
way to integrate

(22) cos2(x), cos4(x), cos6(x), . . .

It is easy to integrate the functions

(23) cos(2x), cos(4x), cos(6x), . . .

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 27

and one can express the functions in (22) as linear combinations of those in (23).
(exercise)

4. Fibonacci Numbers and Recurrence Equations

The Fibonacci are defined by the “initial condition”

(24) f(1) = 1, f(2) = 1

and the “recurrence equation”

(25) f(k) = f(k − 1) + f(k − 2) for k ≥ 3 .

Fibonacci occur many applications, e.g., Fibonacci heaps, Fibonacci search for the
maximum value of a function on an interval, etc. (this “etc.” is a very long
list). They are also a canonical example of recurrence equations in algorithms, and
have been studied by mathematicians in some form for 2000-3000 years (Fibonacci
popularized their study in Europe).

For α, β ∈ R we can generalize the above sequence to the initial conditions

f(1) = α, f(2) = β

(keeping the recurrence equation (25)). If we denote the resulting sequence fα,β(k)
then we have linear relation

fα,β = αf1,0 + βf0,1 ;

hence to find a formula for fα,β(k) it suffices a formula for f1,0 and f0,1.

4.1. Properties of Fibonacci Numbers. Likely the reader knows of some of the
properties of Fibonacci numbers, such as the fact that there is an exact formula and
that fn is the integer nearest to ξn+/

√
5 where ξ+ is the golden ratio (Exercises 0.6(f)

and 0.6(g)).

4.2. Solution to the Fibonacci Recurrence by Guessing and Solving a 2×2
System. One solves (25) by guessing the existence of a solution fn = rn (therefore
different initial conditions than (24)), which holds for r that satisfies

rn+2 = rn+1 + rn

an equation that holds independent of n for r satisfying

r2 − r − 1 = 0,

i.e.,

r+, r−
def
=

1±
√

5

2
.

For any f1, f2 there are unique c+, c− ∈ R for which

fi = c+r
i
+ + c−r

i
−

for i = 1, 2 (this is a 2× 2 system). Hence, by the above guessing and verification
procedure, we produce one solution fn = c+r

n
++c−r

n
− to (25) with the correct values

of f1, f2; however clearly f3 is uniquely determined by f2, f1, similarly f4, f5, . . . are
uniquely determined by f2, f1. Hence we have produced this unique solution.

28 JOEL FRIEDMAN

4.3. Solving General Recurrence Relations. A general “k-th order” recur-
rence equation

(26) a0fn + a1fn−1 + · · ·+ akfn−k = 0

with a0, ak 6= 0 (otherwise we can write a lower order recurrence equation) can be
similarly solved, by solving the equation

a0r
k + a1r

k−1 + · · ·+ ak = 0

If r = ρ is a root of order m, then ρ 6= 0 and there are solutions

fn = ρnni

for i = 0, . . . ,m− 1. It is easy to verify that these are solutions by introducing the
shift operator, σ, on functions N→ C (or Z→ C) defined by

(σf)(n)
def
= f(n+ 1).

Then (26) is equivalent to(
a0σ

k + a1σ
k−1 + · · ·+ ak

)
f = 0

where we set f(n) = fn (i.e., regard fn as a function Z→ C); furthermore, if

a0x
k + · · ·+ ak = a0(x− r1) . . . (x− rk)

(i.e., r1, . . . , rk are the roots of this polynomial, listed with their multiplicities),
then if ρ occurs m times among the r1, . . . , rk, then

(σ − ρ)mf = 0

implies (26). Then we verify that if f(n) = ρnp(n) where p is a polynomial, then
((σ − ρ)f) = ρnq(n) where q is a polynomial of degree one less than p.

Exercise 4.1. It is easy to give a natural definition for P (σ) for any polynomial
P = P (x) over R or C (or any field) and to verify that for any polynomials P,Q

P (σ)Q(σ) = (PQ)(σ)

where PQ is multiplication of polynomials, and hence

P (σ)Q(σ) = Q(σ)P (σ).

It follows that if r1, . . . , rk are the k roots of

p(x) = a0x
k + a1x

k−1 + · · ·+ ak,

i.e.,

p(x) = (x− r1) . . . (x− rk),

then

p(σ) = (σ − r1) . . . (σ − rk),

and when applying p(σ) to a function, one is free to permute the factors (σ −
r1), . . . , (σ − rk) as one likes.

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 29

4.4. Recurrences and Matrix Powers. When we discuss matrices, we will see
that (25) can be written in matrix form as[

fn
fn−1

]
=

[
1 1
1 0

] [
fn−1
fn−2

]
from which we derive the matrix formula[

fn
fn−1

]
=

[
1 1
1 0

]n−2 [
f2
f1

]
.

It will turn out that (1±
√

5)/2 are the eigenvalues of this matrix, from which we
can also derive our exact formula for the Fibonacci numbers and, more generally,
any solution to (25).

Such remarks are valid for any recurrence of the form (26). It will turn out that
the sitation above where ρ is root of order m ≥ 2 is a defect of the matrix analogous
to the above matrix, i.e., to the matrix

−a1/a0 −a2/a0 · · · −an−1/a0 −an/a0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ;

this gives rise to an m×m Jordan block with eigenvalue ρ in the above matrix.

4.5. (Additional) Exercises.

5. Moving Averages (A Bit of Time Series)

Time series is a large field, useful in financial and related forecasting. A basic
example is the study of moving averages.

Say that f : N → R represents the price of a financial instrument traded on a
public exchange, with f(i) denoting the price at day i. The 30-day moving average
of f is defined as

(M30f)(n) =
f(n) + f(n+ 1) + · · ·+ f(n+ 29)

30
,

which makes M30 an operator on functions N → R. For any other g : N → R and
α, β ∈ R we have

(27) M30(αf + βg) = αM30f + βM30g.

If f(n) = c is a constant function, then M30f is again the constant function c.
If f(n) = (−1)n, then M30f = 0. More generally, if f(n) = cos(2π(n+ φ)/M) for
any ψ ∈ R and integer M greater than 2 and dividing 30 (the special case M = 2
and φ = 0 is the function f(n) = (−1)n). Let us try to organize the above ad hoc
observations more systematically.

The first statement says that the constant function is invariant underM30). The
other statements attempt to describe the kernel of M30, i.e., the set of functions

ker(M30) = {f | M30f = 0}
The linearity of M30, i.e., (27), implies that if f, g ∈ ker(M30), then also

αf + βg ∈ ker(M30)

for any α, β ∈ R.

30 JOEL FRIEDMAN

More generally, ifM is a linear map between vector spaces, e.g.,M : Rn → Rm,
then the set

ker(M) = {f | Mf = 0}
is called the kernel of M. If f, g ∈ ker(M), then any linear combination of f, g,
i.e., function/vector of the form αf + βg, is also in the kernel of M.

The kernelM30 are those functions thatM30, roughly speaking, “smooths away”
(in the moving average). More generally, a function f is in the kernel of M30 iff f
satisfies the recurrence equation

(28) f(n) + f(n+ 1) + · · ·+ f(n+ 29) = 0,

in which case f satisfies the recurrence

1 + σ + · · ·+ σ29 = 0.

According to Subsection 4.3, we can find the general solution to the above recurrence
by finding the solutions

(29) 1 + r + · · ·+ r29 = 0;

multiplying by 1− r we see that the solutions are precisely those r with r 6= 1 but
r30 = 1. Taking ζ = e2πi/30, we see that the solutions to (29) are given by

ζ, ζ2, . . . , ζ29,

and since these are all distinct we see that the general solution to (28) is given as

f(n) = c1ζ
n + c2ζ

2n + · · ·+ c29ζ
29.

Hence this is the general form of an element in the kernel of M30.
Notice that even if we are interested only in real-valued f , it is can be more

convenient and intuitive to use complex 30-th roots of unity, i.e., ζ, . . . , ζ29, rather
than the equivalent expressions in terms of sines and/or cosines.

Functions N → R turn out to be an infinite dimensional vector space. Alterna-
tively, one could viewM30, based on 200 days of data, as a map from R200 → R171

(since the moving average at day 172 requires knowledge of the price on day
172 + 29 = 201).

6. Linearity in Power Series

Although spaces of functions, of power series, etc., tend to be infinite dimen-
sional, they give a very natural motivation for the notion of linearity.

6.1. Trigonometric Functions. The power series

sin(x) = x− x3

3!
+
x5

5!
− · · ·

cos(x) = 1− x2

2!
+
x4

4!
− · · ·

converge for any x ∈ R and are useful for approximating sin(x), cos(x). From these
series we get other series for

2 sin(x), 10 sin(x) + 30 cos(x)

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 31

in the evident “linear fashion,” and more generally, for any α, β ∈ R we have

α sin(x) + β cos(x) = β + αx− β

2!
x2 − α

3!
x3 + · · ·

There is another, more sutble, form of linearity: the above series assume that
x is measured in radians. If you prefer degrees, y, then (keeping track of units)
y◦ = (πy/180)rad, and so

sin(y◦) = sin
(
(πy/180)rad

)
=

π

180
y − π3

1803 · 3!
y3 + · · ·

and, more generally, for any γ ∈ R we have

(30) sin
(
(γx)rad

)
= γx− γ3

3!
x3 + · · ·

6.2. Taylor Series. The origin of the above formulas is Taylor’s Theorem

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

for sufficiently “nice” functions; alternatively one can truncate the series above to
approximate f(x), and Taylor’s Theorem allows you to bound the error (if f is
sufficiently differentiable).

If g(x) is another sufficiently nice function, we have for any α, β ∈ R

αf(x) + βg(x) =
(
αf(0) + βg(0)

)
+
(
αf ′(0) + βg′(0)

)
x+

αf ′′(0) + βg′′(0)

2
x2 + · · ·

So there is a “linearity” in combining f, g in this way, which is reflected in the fact
that

(αf + βg)′(0) = αf ′(0) + βg′(0)

and similarly for higer order derivatives.
If rather than scaling f, g one scales x, one has that if h(x) = f(γx) for a γ ∈ R,

then (by the chain rule)

h(0) = f(0), h′(0) = γf ′(0), h′′(0) = γ2f ′′(0), · · ·

which is one way to understand (30); hence there is a linear relationship between,
for example, h′′(0) and f ′′(0), where the proportionality factor is γ2.

6.3. Linearity In Differential Operators. Along the same lines, the following
observation is used in ODE’s. If for any sufficiently differentiable function f we
define

(Lf)(x)
def
= f ′′(x) + p(x)f ′(x) + q(x)f

for any continuous functions p, q, then we easily check that L takes sufficiently
differentiable functions to continuous functions and satisfies

L(αf + βg) = αL(f) + βL(g)

for any α, β ∈ R and f, g sufficiently differentiable. This type of linearity is used in
solving linear ODE’s. Similarly, linearity is a crucial idea in solving linear PDE’s.

7. Classical PageRank and Markov Chains

Markov chains is a large area of research. A simple illustration of their usefulness
are the classical PageRank algorithms.

32 JOEL FRIEDMAN

7.1. Simplified PageRank. Google used to publicly disclose the way they ranked
webpages in order of “importance,” which is one ingredient in how they decide
which websites you see when you type in a search term (the other main ingredient
is “relevance” of a webpage to the term you type). This created a bit of a “cat and
mouse” game: Google would announce changes to its ranking algorithm (and its
relevance algorithm) to provide a better search engine, whereupon website designers
would change their websites to improve their chances of coming within the top ten
pages that Google displays for various search terms. The first algorithm used by
Google was called PageRank, possibly named after one of its two founders. Here is
a simplified version.

Example 7.1. Imagine that the internet consists of four webpages, A,B,C,D,
where

(1) page A has one link to each of the pages B,C,D;
(2) page B has one link to each of pages A,C;
(3) page C has one link to each of pages A,D; and
(4) page D has one link to each of pages A,B.

PageRank works as follows: we think of taking a “random walk” on this internet,
where a walker who is on page A takes a “random step” to one of B,C,D, each with
“probability 1/3”; similary for every webpage we imagine that a walker chooses one
of the links on the page and randomly jumps there. This yields an array of numbers:

A B C D
A 0 1/3 1/3 1/3
B 1/2 0 1/2 0
C 1/2 0 0 1/2
D 1/2 1/2 0 0

This gives a Markov matrix or probability matrix for the associated Markov chain

P =

0 1/3 1/3 1/3

1/2 0 1/2 0
1/2 0 0 1/2
1/2 1/2 0 0

 .

In Math 223 we will learn how to multiply matrices; it will then be easy to see
that P 2 = PP represents what happens after we walk for two steps on this Markov
chain, and P 100 represents what happens after 100 steps.

To see what happens as we walk for progressively more steps on this Markov
chain, we can use Julia or MATLAB: we type

P = [0 1/3 1/3 1/3; 1/2 0 1/2 0; 1/2 0 0 1/2; 1/2 1/2 0 0]

and then issue the commands P ^2 and P^100 to examine P 2 and P 100 (for these
very simple commands, same syntax works both in Julia and MATLAB). We see
that for large n, such as n = 100, Julia reports P 100 as

44 Array\{Float64,2\}:

0.333333 0.222222 0.222222 0.222222

0.333333 0.222222 0.222222 0.222222

0.333333 0.222222 0.222222 0.222222

0.333333 0.222222 0.222222 0.222222

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 33

We will understand to mean that (1) the PageRank of webpage A is 1/3, and those
of B,C,D are 2/9; (2) each row of P 100 represents the stochastic vector representing
the unique stationary distribution.

Exercise 7.1. Following the previous example, Google’s strategy is annouced or
leaked. The designers of webpage B learns of Google’s strategy, whereupon they
introduce 10 links from webpage B to itself; now webpage B has 12 links, 10 to
itself, and 1 to each of A and C. The new Markov matrix is

P = [0 1/3 1/3 1/3; 1/12 10/12 1/12 0; 1/2 0 0 1/2; 1/2 1/2 0 0]

What is P 2, P 100, and the new PageRank? (exercise).

Exercise 7.2. Google observes some webpage designers artificially boosting their
PageRank and decides not to count any links from a webpage to itself. Google’s
revised strategy is annouced or leaked. The designers of webpage B learns of
Google’s revised strategy, whereupon they collude with webpage C as follows: B
adds 100 links to webpage C (hidden at the bottom of their webpage), and C add
100 links to webpage B. The new Markov matrix is

0 1/3 1/3 1/3
1/102 0 101/102 0
1/102 100/102 0 1/102
1/2 1/2 0 0

 .

What is P 2, P 100, P 1000 and the new PageRank (exercise)?

Exercise 7.3. Google observes webpage designers artificially boosting B and C’s
PageRank and decides not to count more than one link from any webpage to any
other. Google’s revised strategy is annouced or leaked. The designers of webpages
B,C learn of Google’s revised strategy, whereupon they decide that webpage B will
only have one link to C (and no other links), and vice versa for webpage C. The
new Markov matrix is

(31)

0 1/3 1/3 1/3
0 0 1 0
0 1 0 0

1/2 1/2 0 0

 .

What is P 2, P 100, P 101, P 102, and P 103? Can you explain why you see what you
see for Pn and n large (e.g., n = 100, . . . , 103)?

Exercise 7.4. Google observes that some webpages have no way to reach other
webpages. They decide to replace P based on webpage links with

Q = (.85)P + (.15)E

where
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 .

What does E represent? What is Q2 and Q100 for the P of (31)?

Exercise 7.5. Google stops announcing and leaking its PageRank algorithm.

34 JOEL FRIEDMAN

7.2. Markov Matrices. Markov Chains is a large field of study; part of this field
involves Markov matrices, which is a generalization of the above PageRank exam-
ples. A Markov matrix is any matrix of the form

P =

p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

where pij represents the probability of transitioning from state i to state j; hence
each row of P is a stochastic vector, meaning a collection of non-negative numbers
whose sum equals one. It is well-known that Markov chain that is irreducible (i.e.,
from any state you can reach any other in some number of steps) has a unique
stationary distribution, meaning a stochastic vector (π1, . . . , πn) such that for each
i we have

(32) πi =

n∑
j=1

πjpji .

Exercise 7.6. The children in your home are running in a circle from room A to
room B to room C to room D and back to A (ad infinitum, or seemingly so). You
model their trajectory by the Markov chain

P =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

What are P 10, P 11, P 12, P 13 ? What is the unique stationary distribution?

Exercise 7.7. Which Markov chain(s) in the above PageRank are not irreducible?

Exercise 7.8. Find stationary distributions of matrices P above by typing in Julia:
using LinearAlgebra and then nullspace(transpose(P - I)) or nullspace(

(P-I)’); in MATLAB type null(transpose(P - eye(4))) or null((P

- eye(4))’)

An (irreducible) Markov chain is called reversible if πjpji = πipij for all i, j; in
Math 223 we will be convinced that this implies that you could run the Markov
chain “in reverse” and it would “look the same” running in reverse. Some physical
situations are “time reversible” (e.g., n celestial bodies moving according to New-
ton’s law of gravitation) and some are not (e.g., a movie where someone increases
entropy by spilling a glass of milk). (Add exercises.)

Exercise 7.9.

7.9(a) Show that ~x = ~x(t) is a vector-valued function R→ Rn of a single variable
t that satisfies the equations

d2

dt2
~x = ~F (~x),

for some vector-valued function F : Rn → Rn, then ~y(t)
def
= ~x(−t) satisfies

the same equation, i.e.,

d2

dt2
~y = ~F (~y).

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 35

7.9(b) Explain the relevance of the above observation to Newtonian celestial me-
chanics, where point masses experience a gravitation force that depends
only on the position of the point masses. Are the equations of Newtonian
mechanics “time reversible”?

8. Graphs, Constrained Data, and Regular Languages

8.1. (2, 7)-Constrained Data. Some decades ago IBM introduced a strategy to
prevent errors in magnetic storage: the idea was to first convert general binary
strings (i.e., sequences of 0’s and 1’s) into longer {0, 1} strings that satisfied certain
constraints that reduced the number of read errors. Errors in reading tended to
occur when there were (1) too few 0’s between any two consecutive 1’s, and (2)
too many 0’s. Specifically, say that a binary string is (2, 7)-constrained if between
every two consecutive 1’s there are between two and seven 0’s. IBM converted each
binary string of length n into a string of length 2n that is (2, 7)-constrained and
stored the longer string. The reason for choosing 2, 7 in the constraint was that it
(1) significantly reduced the chance of error, and (2) there are simple algorithms
to convert an arbitrary binary string of length n into a (2, 7)-contrained string of
length 2n, and to convert the longer string back to the original string.

8.2. More Details on the Motivation Behind (2, 7)-Constrained Data. A
sequence of 0’s and 1’s were stored linearly on a magnetic tape, which one can view
as a sequence of vertical magnets on a long horizontal strip, each magnet polarized
either with + on top and − on bottom, or vice versa; the 1 was stored as an
instruction to change the polarity, and a 0 as to keep the same polarity. When 1’s
were stored near one another, the quick changes in polarity tended to cause errors;
when there were too many zeros between two 1’s, the clocks that measured when
a polarity change occurred were not accurate enough (e.g., to distinguish between
seven 0’s and eight zeros 0’s).

8.3. The Number of (2, 7)-Constrained Words. A matrix computation based
on graph theory shows that the number of (2, 7)-constrained strings of length n is
proportional 2γn, where γ > 0.5. If γ were strictly less than 1/2, then it would
be impossible to translate strings of length n (of which there are 2n) into (2, 7)-
constrained strings of length 2n, since the number of such strings is proportional
to 22nγ which would be too small. Since γ > 1/2, for sufficiently large n there are
more than 2n (2, 7)-strings of length 2n, and hence there is an injection—and hence
an encoding and decoding—from the binary strings of length n to (2, 7)-strings of
length 2n. However there are a number of very efficient algorithms to carry this
out; furthermore results from symbolic dynamics give similarly efficient algorithms
for many generalizations of (2, 7)-strings.

8.4. Directed Graphs as Modeling (2, 7)-Strings. A directed graph is a quadru-
ple (V,E, t, h) where V,E are sets (finite in cases of interest here) and t, h are maps
E → V ; we refer to V as the vertex set, E as the edge set, and t, h as, respectively,
the tails map and the head map. The graph in Figure 1 model (2, 7)-strings in a
sense that we now explain. This graph has vertex set {v0, . . . , v7} and a directed
edges with heads and tails indicated in Figure 1; we have also put labels on the
directed edges (for simplicity we have drawn the edges whose head is v0 in a way
that indicates their common label 1).

36 JOEL FRIEDMAN

v0 v1 v2 v3 v4 v5 v6 v7
0 0 0 0 0 0 0

1

Figure 1. A directed graph (with labels on its edges) that models
(2, 7)-strings.

A walk, k, in a directed graph G = (V,E, h, t) is an alternating sequence of
vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that for all i ∈ [k], t(ei) = vi−1 and h(ei) = vi; we refer to k as the length of
the walk, w. The labels on the edges in the directed graph in Figure 1 associate to
each walk in this graph a (2, 7)-string, and this association is surjective and takes
at most six walks to any one string (exercise). The adjacency matrix of this graph,

AG =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

has its (i, j)-th entry being the number of edges from the i-th vertex to the j-th
vertex; equivalently, AG counts the number of walks of length one from one vertex
to another, and in Math 223 we will see that AnG, the n-th power of the matrix AG,
tells us how many walks there are of length n from any vertex of G to any other (as a
square array of numbers). In Math 223 we will state the Perron-Frobenius theorem,
which will imply that the total number of walks of length n in G is (asymptotically)
proportional to λn1 , where λ1 > 0 is the Perron-Frobenius eigenvalue of G. It will
follow that the number of (2, 7)-strings of length n is also propotional to λn1 .

Exercise 8.1. Type the above matrix into Julia or MATLAB; you can cut and
paste from here, although likely you will need to add spaces (alternatively you can
go to the course webpage):

A = [0 1 0 0 0 0 0 0 ;

0 0 1 0 0 0 0 0 ;

1 0 0 1 0 0 0 0 ;

1 0 0 0 1 0 0 0 ;

1 0 0 0 0 1 0 0 ;

1 0 0 0 0 0 1 0 ;

1 0 0 0 0 0 0 1 ;

1 0 0 0 0 0 0 0]

Compute A3, and explain the entries that you see in terms of walks of length 3 in
the graph in Figure 1. Set B = A500, and compute a few entries of B to the 1/500

power. Are they larger than
√

2 or smaller? Why should we care? Type eigs(A)

into MATLAB or using LinearAlgebra and eigvals(A) into Julia; do you see a
number close to

√
2, and, if so, what is its value?

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 37

Exercise 8.2. Consider the “Fibonacci graph”

v0 v1

Write down its adjacency matrix, A. Compute the powers A2, A3, A4, A5, A6. Have
we seen this matrix before? Based on your observations, write down a formula
for the number of walks of length n from v0 to itself, from v1 to itself, from v0
to v1, and from v1 to v0. Prove by induction n that your formulas are correct.
Enter this matrix into Julia or MATLAB, and type eigs(A) into MATLAB or
using LinearAlgebra and eigvals(A) into Julia; how close are these numbers to
(1±

√
5)/2?

8.5. Regular Languages. An alphabet is a finite set; fix an alphabet A of size
a. A discrete finite automaton (or simply DFA) over A is a digraph (directed
graph) G = (V,E, t, h) with the following additional structure, constraints, and
conventions: (1) each vertex, v, has exactly a edges leaving it (i.e., whose tails are
v); (2) there is a “labelling” of the edges, which is a map ` : E → A such that each
vertex has its leaving edges labelled with distinct elements of A; (3) we also refer
to the vertices of G as the states of G; (4) there is a designed “starting state,” vinit
of V , and (5) there is a designated subset of V called the final states or accepting
states. As such, there are exactly ak walksof length k beginning at vinit, and the
labelling associates to each walk a distinct string (or word) on A of length k (i.e., a
sequence of k elements in A). A string in A of length k is accepted by this DFA if
the associated walk beginning at vinit ends in one of the final states, and is otherwise
rejected; the subset of strings accepted by the DFA is the language (i.e., subset of
all finite strings over A) recognized by the DFA.

Etc.

9. Error Detection/Correction in Binary Data and ISBN Numbers

Error detection and correction is a large field of research. A basic example are
a simple parity check for binary data and the check digit in ISBN numbers; this
also illustrates the importance of finite fields and a fundamental usefulness of prime
numbers (as opposed to composite numbers).

9.1. Simple Parity Check. One way to detect errors in the transmission of n-bits
(binary digits, i.e., the digits {0, 1}) over a “noisy” channel is to add to the message
x1, . . . , xn (with each xi = 0, 1) a “parity check digit” xn+1 given by the equation

x1 + x2 + · · ·+ xn + xn+1 ≡ 0 (mod 2),

so that xn+1 = 1 if x1, . . . , xn contains an odd number of 1’s, and otherwise xn+1.
In this way if a single xi is received incorrectly, then the resulting message has
an odd number of 1’s instead of an even number. In this way we can detect that
there is has been an error in the message x1, . . . , xn+1; we may be able to ask the
transmitter to retransmit the message.

Of course, if there are two errors in the received message, or any even number
of errors, then we cannot detect this.

38 JOEL FRIEDMAN

9.2. ISBN Numbers. Until 2006, ISBN (International Stanard Book Number)
Numbers would assign to each book a unique 9-digit identifier x1, . . . , x9; the 10-th
digit would be a “check digit” x10 given by the equation

x1 + 2x2 + . . .+ 9x9 + 10x10 ≡ 0 (mod 11)

(if x10 turned out to equal 10, this last digit was written with an X). This type of
error detection allows us to detect if (1) a single digit is recorded/reported incor-
rectly, or (2) two (unequal) digits are interchanged (presumably the most common
case is when the digits are consecutive) (exercise).

Modern ISBN numbers have 12 digits and a 13th check digit given by

x1 + 3x2 + x3 + 3x4 + · · ·+ 3x12 + x13 ≡ 0 (mod 10)

In this way we can detect an error if (1) a single digit is recorded/reported incor-
rectly, or (2) two (unequal) consecutive digits are interchanged, provided that they
are not congruent modulo 5 (namely the pairs: 0, 5, 1, 6, . . ., and 4, 9)

9.3. Error Correcting Codes. In practice we often want to correct errors, not
just detect them. For example, if we have a binary message x1, . . . , xn and we
transmit a message that is three times as long:

x1, x1, x1, x2, x2, x2, x3, . . . , xn−1, xn, xn, xn

then if there is a single error in the reception of this message, we can not only detect
it but recover the original message (by taking a majority vote for every group of
three duplicates).

For n = 1, it is easy to see that if we want to send a single bit x1 in a way
that we can correct any single error in the received bits, we in fact need to send
the message x1, x1, x1 in place of x1. However, if n = 4, rather than sending the
message x1, x2, x3, x4 in 12 bits with each xi sent in triplicate, we claim that we
can send the 7 bits

x1, x2, x3, x4, x5, x6, x7,

where

x5 = x1 + x2 + x3

x6 = x1 + x3 + x4

x7 = x1 + x2 + x4

and we can still correct any single error; to see this, we can verify (exercise, with
hints) that each of the 16 possible values of (x1, x2, x3, x4), the resulting 16 7-
bit strings each are of Hamming distance at least 3 from each other, where for
~x = (x1, . . . , xm) and ~y = (y1, . . . , ym) we define

(33) ρHamm(~x, ~y)
def
=
∣∣{i ∈ [m] | xi 6= yi}

∣∣,
i.e., the Hamming distance of two strings is the number of components on which
they differ.

The above way of transmitting 4 bits by adding 3 “check bits” is a famous
error-correcting code known as a Hamming code. The code words are more easily

APPLICATIONS IN LINEAR ALGEBRA, MATH 223 39

recognized as the kernel of the 3× 7 matrix

H =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

where (1) H is formed by writing all 7 nonzero strings of 3 bits, and (2) the kernel
of H refers to those strings of 7 bits, ~z = z1, . . . , z7 satisfying “Hz = 0” working
over the integers modulo 2, i.e., the equations

1z1 + 0z2 + 0z3 + 1z4 + 1z5 + 0z6 + 1z7 = 0

0z1 + 1z2 + 0z3 + 1z4 + 0z5 + 1z6 + 1z7 = 0

0z1 + 0z2 + 1z3 + 0z4 + 1z5 + 1z6 + 1z7 = 0

The fact that this kernel turns out to be 4-dimensional is why one can transmit 4
bits with this Hamming code.

Exercise 9.1. (1) Show that if ~x = (x1, . . . , xm) and ~y = (y1, . . . , xm) are two
sequences of bits, then with ρHamm as in (33) we have

ρHamm(~x, ~y) = ρHamm(~0, ~x+ ~y)

where ~0 = (0, . . . , 0) and

~x+ ~y = (x1 + y1, . . . , xm + ym)

where the addition over bits is done modulo two (in logic this is the
exclusive-or (XOR), where 1 is “true” and 0 is “false”).

(2) Say that a set of binary strings of some length, S ⊂ {0, 1}m, is a linear code
if for any ~x, ~y ∈ S we have ~x+ ~y ∈ S. Show that the Hamming code above
is a linear code.

(3) Show that the Hamming code above has no code word of distance 1 or 2 to
~0 (this will require a bit of case analysis).

(4) Show that the Hamming code above has minimum distance 3, i.e., any
distinct strings of length 7 of the code have Hamming distance at least
three.

(5) Conclude that if ~x is a code word and ~y is of distance at most one to ~x,
then there is no other codeword ~x′ that is of distance at most one to ~y.

Exercise 9.2. (1) Show that if ~z = (z1, . . . , z7) is not a code word for the
above Hamming code, i.e., if at least one of

1z1 + 0z2 + 0z3 + 1z4 + 1z5 + 0z6 + 1z7,

0z1 + 1z2 + 0z3 + 1z4 + 0z5 + 1z6 + 1z7,

0z1 + 0z2 + 1z3 + 0z4 + 1z5 + 1z6 + 1z7

is not zero, then there is a code word that is of distance 1 to ~z.
(2) Since there are 8 strings {0, 1}7 that are of distance one or zero to any fixed

element of {0, 1}7, and each element of {0, 1}7 is of distance zero or one to
one of 16 words in the above code, is it possible that some element of {0, 1}
is of distance one or zero to two distinct code words?

40 JOEL FRIEDMAN

(3) Explain why the previous exercise implies that the above Hamming code is
of minimum distance at least 3, and hence can correct at least 1 error in a
received bit.

More generally, for any r ∈ N we can transmit 2r− r−1 bits by adding r “check
bits” to get an error-correcting code each of whose codewords are of distance at least
3 from one another (and hence this code can correct a single error); we construct
this using the analogous construction of a matrix H with 2r − 1 columns that
contain each nonzero string of length r. These Hamming codes are perfect codes
such that the “Hamming distance balls of radius 1” cover all of the set of strings
of 2r − 1 bits without (any intersection) and any leftover.

Exercise 9.3. Prove that the minimum distance of any Hamming code is at least
three.

(Other exercises.)

10. Motivation from Graphics

References

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca

	0. Introduction
	0.1. Notation
	0.2. The Complex Numbers
	0.3. Summation Notation
	0.4. Product Notation
	0.5. Proofs By Induction
	0.6. (Additional) Exercises

	1. Least Squares Curve Fitting
	1.1. Linear Regression
	1.2. Remarks on the Formulae for Linear Regression
	1.3. Linear Regression and 22 Systems
	1.4. Manipulating the Data
	1.5. Related Measurements of Fit
	1.6. Completing the Square Versus Differentiation
	1.7. Derivation of Best Fit
	1.8. Least Squares as a Projection
	1.9. More General Least Squares

	2. Linear Algebra Without Linear Algebra
	2.1. nn Systems
	2.2. Exact Polynomial Fitting
	2.3. Parabola Fitting Example
	2.4. Calculus Example
	2.5. The Uniqueness-Homogeneous Principle

	3. Sums of Powers
	3.1. Easy Derivation of the Sums of Squares Formula
	3.2. Sums of Binomial Coefficients
	3.3. Sums of Powers
	3.4. LINEARITY AND ABSTRACT VECTOR SPACES
	3.5. The Operators D,S and Some Operators from Calculus
	3.6. Changing From Binomials to Powers and Vice Versa
	3.7. Stirling Numbers
	3.8. Integrals of Even Powers of cos(x)

	4. Fibonacci Numbers and Recurrence Equations
	4.1. Properties of Fibonacci Numbers
	4.2. Solution to the Fibonacci Recurrence by Guessing and Solving a 22 System
	4.3. Solving General Recurrence Relations
	4.4. Recurrences and Matrix Powers
	4.5. (Additional) Exercises

	5. Moving Averages (A Bit of Time Series)
	6. Linearity in Power Series
	6.1. Trigonometric Functions
	6.2. Taylor Series
	6.3. Linearity In Differential Operators

	7. Classical PageRank and Markov Chains
	7.1. Simplified PageRank
	7.2. Markov Matrices

	8. Graphs, Constrained Data, and Regular Languages
	8.1. (2,7)-Constrained Data
	8.2. More Details on the Motivation Behind (2,7)-Constrained Data
	8.3. The Number of (2,7)-Constrained Words
	8.4. Directed Graphs as Modeling (2,7)-Strings
	8.5. Regular Languages

	9. Error Detection/Correction in Binary Data and ISBN Numbers
	9.1. Simple Parity Check
	9.2. ISBN Numbers
	9.3. Error Correcting Codes

	10. Motivation from Graphics
	References

