HOMEWORK \#4, MATH 223, SPRING 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Part of the homework will use the inclusion-exclusion principle; a special case of this principle says that if A_{1}, A_{2} are subsets of a finite set, then

$$
\begin{equation*}
\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right| \tag{1}
\end{equation*}
$$

where use the notation $|B|$ to denote the cardinality (size) of a set B. Similarly, if A_{1}, A_{2}, A_{3} are subsets of a finite set, then

$$
\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\left|A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{3}\right| ;
$$

the principle generalizes in many ways, such as to any number of subsets of a set whose elements are weighted with appropriate finiteness conditions on the weights.

The textbook proves that for finite dimensional subspaces V_{1}, V_{2} of a vector space V, we have

$$
\begin{equation*}
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right) \tag{2}
\end{equation*}
$$

where $V_{1}+V_{2}$ is defined to be

$$
\begin{equation*}
V_{1}+V_{2}=\left\{v_{1}+v_{2} \in V \quad \mid v_{1} \in V_{1} \text { and } v_{2} \in V_{2}\right\} \tag{3}
\end{equation*}
$$

(one easily checks that this set is a subspace of V).
The following theorem from class and the textbook is used to prove everything in Sections 3.1-3.4, including (2).

Theorem 0.1 (Basis Extension Theorem). Let V be a finite dimensional (real) vector space, i.e., one spanned by a finite set of vectors. Let $v_{1}, \ldots, v_{s} \in V$ be linearly independent, and $u_{1}, \ldots, u_{t} \in V$ such that

$$
\begin{equation*}
V=\operatorname{Span}\left(v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{t}\right) \tag{4}
\end{equation*}
$$

Then V has a basis consisting of v_{1}, \ldots, v_{s} and some elements of $\left\{u_{1}, \ldots, u_{t}\right\}$.

[^0]
Homework Problems

(1) Let V_{1}, V_{2} be subspaces of a finite dimension vector space V. The point of this exercise to prove (2) in a bit more detail than is done in the textbook.
(a) Explain in 20-50 words, and using the Basis Extension Theorem, why any basis, v_{1}, \ldots, v_{r}, of $V_{1} \cap V_{2}$ can be extended to a basis, $v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{s}$, of V_{1}.
(b) Explain in 6-15 words why given your solution to part (a), any basis, $v_{1}, \ldots, v_{r}, V_{1} \cap V_{2}$ can be extended to a basis, $v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{t}$, of V_{2}.
(c) Explain in 8-20 words what is the dimension of $V_{1} \cap V_{2}$ in terms of r, s, t, using facts shown above.
(d) Explain briefly what are the dimensions of V_{1} and of V_{2} in terms of r, s, t, using facts shown above.
(e) With notation in parts (a) and (b), let

$$
B=\left\{v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{s}, w_{1}, \ldots, w_{t}\right\}
$$

(i) Explain in 6-15 words why each $u_{i}(i=1, \ldots, s)$ lies in $V_{1}+V_{2}$ (i.e., can be written as some element of V_{1} plus some element of V_{2}).
(ii) Explain in 6-15 words why each $w_{i}(i=1, \ldots, t)$ lies in $V_{1}+V_{2}$ (i.e., can be written as some element of V_{1} plus some element of V_{2}).
(iii) Explain in 9-25 words why each $v_{i}(i=1, \ldots, r)$ lies in $V_{1}+V_{2}$ (i.e., can be written as some element of V_{1} plus some element of $\left.V_{2}\right)$; then explain why $\operatorname{Span}(B)$ is contained in $V_{1}+V_{2}$.
(iv) Prove that the elements of B are linearly independent by showing that if

$$
\sum_{i=1}^{r} \alpha_{i} v_{i}+\sum_{j=1}^{s} \beta_{j} u_{j}+\sum_{k=1}^{t} \gamma_{k} w_{t}=0
$$

then all the $\alpha_{i}, \beta_{j}, \gamma_{k}$ must be 0 . [Hint: one way of doing this is to write

$$
\sum_{i=1}^{r} \alpha_{i} v_{i}+\sum_{j=1}^{s} \beta_{j} u_{j}=-\sum_{k=1}^{t} \gamma_{k} w_{t}
$$

and to explain in 20-60 words why $u=0$ and hence all the β_{j} must be 0 . Then one can finish in another 10-25 words.]
(f) Briefly explain why B spans all of $V_{1}+V_{2}$.
(g) Using the above, briefly explain why B is a basis for $V_{1}+V_{2}$.
(h) Using the above, briefly explain what is the dimension of $V_{1}+V_{2}$ in terms of r, s, t, using facts shown above.
(2) Let
$V_{1}=\{f: \mathbb{Z} \rightarrow \mathbb{R} \mid f(n+4)=f(n)\}, \quad V_{2}=\{f: \mathbb{Z} \rightarrow \mathbb{R} \mid f(n+5)=f(n)\}$.
(a) Briefly explain: what are the dimesions of V_{1} and V_{2} ?
(b) Briefly explain: what is a simple description of $V_{1} \cap V_{2}$?
(c) Briefly explain: what is the dimension of $V_{1}+V_{2}$?
(3) Same question as the previous exercise, except with
$V_{1}=\{f: \mathbb{Z} \rightarrow \mathbb{R} \mid f(n+8)=f(n)\}, \quad V_{2}=\{f: \mathbb{Z} \rightarrow \mathbb{R} \mid f(n+10)=f(n)\}$.
(4) Fix an $n \in \mathbb{Z}$, and let e_{1}, \ldots, e_{n} denote the standard basis of \mathbb{R}^{n}. For $A \subset\{1, \ldots, n\}$, let E_{A} denote the span of all e_{a} with $a \in A$. Let A_{1}, A_{2} be two subsets of $\{1, \ldots, n\}$.
(a) What is the dimension of E_{A} in terms of $|A|$? Briefly justify your answer.
(b) Describe $E_{A_{1}} \cap E_{A_{2}}$, and briefly justify your answer. What is its dimension?
(c) Describe $E_{A_{1}}+E_{A_{2}}$, and briefly justify your answer. What is its dimension?
(d) If $V_{1}=E_{A_{1}}$ and $V_{2}=E_{A_{2}}$, use your answers to give an expression for

$$
\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)
$$

an expression for

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)
$$

and explain why inclusion-exclusion implies that these are equal.
(e) Let A_{1}, A_{2}, A_{3} be subsets of $\{1, \ldots, n\}$, and set $V_{i}=E_{A_{i}}$ for $i=1,2,3$. Show that

$$
\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\operatorname{dim}\left(V_{3}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{3}\right)-\operatorname{dim}\left(V_{2} \cap V_{3}\right)+\operatorname{dim}\left(V_{1} \cap V_{2} \cap V_{3}\right) .
$$

(f) If V_{1}, V_{2}, V_{3} are subspaces of \mathbb{R}^{n}, is it always true that
$\operatorname{dim}\left(V_{1}+V_{2}+V_{3}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)+\operatorname{dim}\left(V_{3}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{3}\right)-\operatorname{dim}\left(V_{2} \cap V_{3}\right)+\operatorname{dim}\left(V_{1} \cap V_{2} \cap V_{3}\right) ?$
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

