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Homework Problems

(1) Exercises 2,4,8,9 from Section 2.4 (Test) of the textbook.
(2) Let V,W be real vector spaces; we say that a map L : V → W is a linear

transformation if for all v1, v2 ∈ V and α, β ∈ R we have that

L(αv1 + βv2) = αL(v1) + βL(v2).
Prove that in this case

ker(L) def
= {v ∈ V | L(v) = 0}

is a subspace of V . Prove that

Image(L) def
= {L(v) | v ∈ V }

is a subspace of W .
(3) Let L : V → V be the linear transformation on Functions(Z→ R) given by

(Lf)(n) = f(n+ 2)− 2f(n+ 1) + f(n).

Show that the functions (1) f(n) = 1 for all n ∈ Z, and (2) f(n) = n for
all n ∈ Z are in the kernel of L. Show that given f(0), f(1) one can give
an exact formula for the function f ∈ Ker(L) whose those values at 0, 1.

(4) Generalize the problem above to

(Lf)(n) = f(n+ 3)− 3f(n+ 2) + 3f(n+ 1)− f(n) :
Show that (1) any polynomial of degree at most 2 is in the kernel of L,
and (2) given f(0), f(1), f(2), one ca give an exact formula for the function
f ∈ ker(L) with those values at 0, 1, 2.

(5) Let V = P3 = Poly≤3(R). Which of the following subsets of V are sub-
spaces? Explain.
(a) {p ∈ V | p(3)− 4p(5) = 0}
(b) {p ∈ V | p(3)− 4p(5) = 3}
(c) {p ∈ V | p(3)p(4)− 4p(5) = 0}
(d) {p ∈ V | p(3)p(4)− 4p(5)p(6) = 0}
(e) {p ∈ V | p′(3) = 0}
(f) {p ∈ V | p′(3) + p(4) = 0}
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