HOMEWORK #3, MATH 223, SPRING 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

HOMEWORK PROBLEMS

- (1) Exercises 2,4,8,9 from Section 2.4 (Test) of the textbook.
- (2) Let V, W be real vector spaces; we say that a map $\mathcal{L} \colon V \to W$ is a *linear* transformation if for all $v_1, v_2 \in V$ and $\alpha, \beta \in \mathbb{R}$ we have that

$$\mathcal{L}(\alpha v_1 + \beta v_2) = \alpha \mathcal{L}(v_1) + \beta \mathcal{L}(v_2).$$

Prove that in this case

$$\ker(\mathcal{L}) \stackrel{\text{def}}{=} \{ v \in V \mid \mathcal{L}(v) = 0 \}$$

is a subspace of V. Prove that

$$\operatorname{Image}(\mathcal{L}) \stackrel{\text{def}}{=} \{\mathcal{L}(v) \mid v \in V\}$$

is a subspace of W.

(3) Let $\mathcal{L}: V \to V$ be the linear transformation on Functions $(\mathbb{Z} \to \mathbb{R})$ given by $(\mathcal{L}f)(n) = f(n+2) - 2f(n+1) + f(n).$

Show that the functions (1) f(n) = 1 for all $n \in \mathbb{Z}$, and (2) f(n) = n for all $n \in \mathbb{Z}$ are in the kernel of \mathcal{L} . Show that given f(0), f(1) one can give an exact formula for the function $f \in \text{Ker}(\mathcal{L})$ whose those values at 0, 1.

(4) Generalize the problem above to

$$(\mathcal{L}f)(n) = f(n+3) - 3f(n+2) + 3f(n+1) - f(n):$$

Show that (1) any polynomial of degree at most 2 is in the kernel of \mathcal{L} , and (2) given f(0), f(1), f(2), one ca give an exact formula for the function $f \in \ker(\mathcal{L})$ with those values at 0, 1, 2.

- (5) Let $V = \mathcal{P}_3 = \text{Poly}_{\leq 3}(\mathbb{R})$. Which of the following subsets of V are subspaces? Explain.
 - (a) $\{p \in V \mid p(3) 4p(5) = 0\}$
 - (b) $\{p \in V \mid p(3) 4p(5) = 3\}$
 - (c) $\{p \in V \mid p(3)p(4) 4p(5) = 0\}$
 - (d) $\{p \in V \mid p(3)p(4) 4p(5)p(6) = 0\}$
 - (e) $\{p \in V \mid p'(3) = 0\}$
 - (f) $\{p \in V \mid p'(3) + p(4) = 0\}$

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

 $\mathbf{2}$