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Homework Problems

3.10 Verify that
n∑

m=1

m2 =

(
n+ 1

2

)
+ 2

(
n+ 1

3

)
gives our usual formula for

∑n
m=1m

2.

Solution:(
n+ 1

2

)
+ 2

(
n+ 1

3

)
=

(n+ 1)n

2
+ 2

(n+ 1)n(n− 1)

6

= (n+ 1)n
3 + 2(n− 1)

6
= (n+ 1)n(2n+ 1)/6,

which is our familiar expression for
∑n

m=1m
2.

2.1 Let L be the map taking a differentiable function, f , to the function Lf
defined by

Lf =
d

dx
f − 3f.

(a) Show that for any C ∈ R, f(x) = Ce3x lies in ker(L).

(b) Show that if f ∈ ker(L), then g(x)
def
= f(x)e−3x satisfies g′(x) = 0 for

all x.
(c) Show that if f ∈ ker(L), then f(x) must be of the form Ce3x for some

C ∈ R.
(d) Find a polynomial of degree one, p(x) = a0 + a1x, such that Lp = x.
(e) Find all solutions to the equation Lf = x.

Solution:
(a) f ′(x) = C3e3x, so f ′ − 3f = 0, so f ∈ ker(L)
(b) By the product rule, g′ = f ′e−3x+f(−3)e−3x = (f ′−3f)e−3x = 0.
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(c) Since g′ = 0 (for g above), g(x) = C for a constant C ∈ R, and
hence fe−3x = g = C and so f = Ce3x.

(d) We have

Lp = p′ − 3p = a1 − 3(a0 + a1x) = (−3a0 + a1)− 3a1x.

Setting Lp = x is equivalent to

(−3a1)x+ (a1 − 3a0) = x,

i.e.,
−3a1 = 1, a1 − 3a0 = 0;

the first displayed equation gives a1 = −1/3; the second gives
a0 = a1/3 = −1/9. In other words, p(x) = −x/3− 1/9

(e) Since Lf = x has a particular solution p(x) = −x/3 − 1/9, the
general solution is p(x) plus any element of ker(L), i.e.,

−x/3− 1/9 + Ce3x.

2.2 Let L be the map taking a function f : Z→ R to the function L defined by

(Lf)(n) = f(n+ 1)− 2f(n).

Show that f ∈ ker(L) iff f is given as

f(n) = C2n

for some C ∈ R.

Solution: Assume that f ∈ ker(L), i.e., f(n + 1) = 2f(n) for all
n ∈ Z. Then

f(1) = 2f(0), f(2) = 2f(1) = 22f(0), f(3) = · · · = 23f(0),

and similarly f(n) = 2nf(0) for all n ∈ N. We similarly see that
f(0) = 2nf(−n) for all n ∈ N, and hence f(n) = C2n where C = f(0).

Conversely, assume that f(n) is given by C2n for a constant C.
Then for all n ∈ Z,

f(n+ 1)− 2f(n) = C2n+1 − C · 2 · 2n = 0.

Hence f ∈ ker(L).

2.3 Let LFib be the map taking a function f : Z → R to the function LFibf
defined by

(LFibf)(n) = f(n+ 2)− f(n+ 1)− f(n).

(a) Let F : Z→ R be the Fibonacci numbers, given by
(i) F (1) = F (2) = 1,
(ii) F (n) = F (n− 1) + F (n− 2) for n ≥ 3,

(iii) F (n− 2) = F (n)− F (n− 1) for n ≤ 0,
which yields the familiar sequence

. . . 13,−8, 5,−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Show that F ∈ ker(LFib).



SOLUTIONS TO HOMEWORK #2, MATH 223, SPRING 2019 3

(b) Show that for any r ∈ R, the function g : Z → R given by g(n) = rn

lies in ker(LFib) iff r satifies

r2 − r − 1 = 0.

(c) Let ξ+ = (1+
√

5)/2 and ξ− = (1−
√

5)/2. Show that for any b0, b1 ∈ R
there are unique x, y with

x + y = b0
ξ+x + ξ−y = b1

(d) Explain why every element, f , of ker(LFib) is uniquely determined by
its values f(0) and f(1).

(e) Explain why every element, f , of ker(LFib) is uniquely expressible as

f(n) = x ξn+ + y ξn−

for some x, y ∈ R [Hint: show that there is a unique x, y satisfying this
formula for n = 0 and n = 1.]

(f) Find a formula for the Fibonacci numbers, F (n), with n above.

Solution:
(a) The condition F (n) = F (n − 1) + F (n − 2) for all n ∈ Z is

equivalent to F (n+ 2) = F (n− 1) + F (n) for all n ∈ Z, which is
equivalent to F (n+ 2)−F (n− 1)−F (n) = 0 for all n ∈ Z, which
is equivalent to F ∈ ker(LFib).

(b) We have g ∈ ker(LFib) is equivalent to rn+2 − rn+1 − rn = 0 for
all n ∈ Z; since r = 0 does not satisfy this equation for n = 0, we
may add r 6= 0 to the latter of the equivalent statements. Hence
both statements are equivalent to r 6= 0 and

rn
(
r2 − r − 1

)
= 0

for all n ∈ Z; this is equivalent to r 6= 0 and

r2 − r − 1 = 0,

which is equivalent to r2 − r − 1 = 0 since r = 0 does not satisfy
this equation.

(c) (There are many ways to do this; for example, we probably ex-
plained in class that you can “cross multiply” the coefficients and
check that this is nonzero. Here is another way.) Multiplying the
first equation by ξ+ and subtracting the second equation from
the first we get (ξ+ − ξ−)y = ξ+b0 − b1, and so the unique value

for y is y = (ξ+b0 − b1)/
√

5. Next the top equation implies that
x = b0−y. Since this is a 2×2 system, we see that for b0 = b1 = 0
we must have y = x = 0. Hence this 2 × 2 system has a unique
solution for all x, y.

(d) Given f(0), f(1), f(2) is uniquely determined as f(1)+f(0); f(3)
is uniquely determined as f(2) + f(1); continuing in this fashion
(or by induction), we see that for all n ∈ N we have that f(n) is
unique determined once f(0), f(1) are fixed. Similarly f(−1) =
f(1)−f(0), f(−2) = f(0)−f(−1), etc., and we see that for all n ∈
Z, f(−n) is uniquely determined once f(0), f(1) are determined.
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Conversely, given f(2), f(3), . . . and f(−1), f(−2), . . . determined
in this way from f(0) and f(1), we have that

(1) f(2)− f(1)− f(0) = 0, f(3)− f(2)− f(1) = 0,

(from the values given to f(2), f(3), . . .), and

(2) f(1)− f(0)− f(−1) = 0, f(0)− f(−1)− f(−2) = 0,

(from the values given to f(−1), f(−2), . . .). Hence such a func-
tion f satisfies f(n+ 2)− f(n+ 1)− f(n) = 0 for n ≥ 2 (by (1))
and for n ≤ 1 (by (2)), and hence for all n ∈ Z.

(e) Let f ∈ ker(LFib). For fixed x, y ∈ R,

(3) g(n) = g(x, y;n) = xξn+ + yξn−

lies in ker(LFib); by part (c), we can find x, y such that

x + y = f(0)
ξ+x + ξ−y = f(1) ,

whereupon g(0) = f(0) and g(1) = f(1), and by part (d) f(n) =
g(n) for all n ∈ Z; therefore for all n ∈ Z,

f(n) = g(n) = xξn+ + yξn−

(f) Setting b0 = F (0) = 0 and b1 = F (1) = 1 in part (c), the formulas

in part (c) show that y = (ξ+b0 − b1)/
√

5 = −1/sqrt5 and x =

b0 − y = 1/
√

5. Hence

F (n) = ξn+/
√

5− ξn−/
√

5.

2.4 Let L be the operator taking a function f : Z → R to the function Lf
defined by

(Lf)(n) = f(n+ 2)− f(n).

(a) Show that f ∈ ker(L) iff f is of the form

f(n) =

{
a, if n is even, and
b, otherwise.

for some a, b ∈ R.
(b) Show that for any r ∈ R, the function g : Z → R given by g(n) = rn

lies in ker(L) iff r satifies

r2 − 1 = 0.

(c) Show that f ∈ ker(L) iff f is of the form

f(n) = x+ (−1)ny

for some x, y ∈ R.

Solution: This is the same idea(s) as Problem 2.3 above, but easier
as far as the calculations go.
(a) f ∈ ker(L) iff f(n+ 2) = f(n) for all n ∈ Z; this implies

· · · = f(−4) = f(−2) = f(0) = f(2) = f(4) = · · ·
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· · · = f(−3) = f(−1) = f(1) = f(3) = · · · ,
and these two conditions clearly imply f(n + 2) = f(n) for all
n ∈ Z; the two conditions are equivalent to the desired conditions.

(b) Reasoning at in Problem 2.3, g(n + 2) − g(n) is equivalent to
rn(r2 − 1) = 0 for all n ∈ Z, which implies that r 6= 0 and is
therefore equivalent to r2 − 1 = 0 (whose solutions are r = ±1).

(c) Reasoning at in Problem 2.3, f is determined by its values
f(0), f(1), and any function of the form g(n) = x1n + y(−1)n =
x+ y( − 1)n lies in ker(L). Since

x+ y = f(0), x− y = f(1)

has a unique solution (x, y), for any given f(0), f(1), for this value
of (x, y) we have f(n) = g(n) = x+ y( − 1)n for all n ∈ Z.

2.5 Let L be the operator taking a function f : Z → R to the function Lf
defined by

(Lf)(n) = f(n+ 4)− f(n).

We similarly define L on functions Z→ C.
(a) Say that f ∈ ker(L) and f(0) = 0, f(1) = 1, f(2) = 2, and f(3) = 3.

Describe f(n) for all n.
(b) Show that for any r ∈ C, the function g : Z → C given by g(n) = rn

lies in ker(L) iff r satifies

r4 − 1 = 0.

(c) Show that the solutions to r4 − 1 = 0 are given by r = 1,−1, i,−i
where i ∈ C denotes

√
−1.

(d) Show that f ∈ ker(L) iff f is of the form

f(n) = α+ βin + γ(−1)n + δ(−i)n

for some α, β, γ, δ ∈ C.

Solution: The main point of this problem is to show why complex
numbers can be useful; the techniques are mostly like those of the
previous two problems.

Parts (a) and (b) are done by reasoning as in the previous two
problems. Part (c) is done by verifying that each of r = 1,−1, i,−i
solves r4 − 1 = 0, and then noting that a polynomial of degree 4 has
at most 4 roots. Part (d) follows as soon as we can convince ourselves
that for any given f(0), . . . , f(3) ∈ C, the 4× 4 system

α + β + γ + δ = f(0)
α + iβ − γ − iδ = f(1)
α − β + γ − δ = f(2)
α − iβ − γ + iδ = f(3)

has a unique solution (α, β, γ, δ). Adding all four equations together
we get

4α+ 0β + 0γ + 0δ = f(0) + f(1) + f(2) + f(3),
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which uniquely determines α. If we multiply the first equation by 1,
the second by i, the third by −1, and the fourth by −i, we get

α + β + γ + δ = f(0)
iα − β + iγ + δ = if(1)
−α + β − γ + δ = −f(2)
−iα − β − iγ + δ = −if(3)

and adding these together similarly gives

4δ = f(0) + if(1)− f(2)− if(3)

Again multiplying the first equation by 1, the second by i, the third
by −1, and the fourth by −i gives

4γ = f(0)− f(1) + f(2)− f(3).

Similarly we get

4β = f(0)− if(1)− f(2) + if(3).

Hence there is a unique solution in (α, β, γ, δ). (There are other ways
of solving this system.) Solving this system illustrates what is
called the DFT (discrete Fourier transform), and is algorith-
mically solved by what is often called the FFT (fast Fourier
transform); this idea has numerous applications, such as mul-
tiplying two degree n polynomials quickly (for n large enough
that the näıve multiplication algorithm is too slow).
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