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Homework Problems

3.2 (a) We say that a polynomial p(x) = a0 + a1x + a3x
2 + a3x

3 is odd if
p(−x) = −p(x). For which a0, a1, a2, a3 is p odd?

Solution: If p(−x) = −p(x) then

a0 + a1(−x) + a3(−x)2 + a3(−x)3 = −(a0 + a1x + a3x
2 + a3x

3) ;

expanding we see that the above equality is equivalent to

2a0 + 2a2x
2 = 0

(as polynomials). Since the LHS (left-hand-side) equals the zero
polynomial, we have that a0 = 0 and a2 = 0. Hence p is odd
for arbitrary a0, . . . , a3 for which a0 = 0 and a2 = 0, i.e., p(x) =
a1x + a3x

3.

(b) Show that if p(x) = a0 + a1x+ a3x
2 + a3x

3 is odd, then p(0) = 0.

Solution: By the last part p(x) = a1x+ a3x
3, so p(0) = a1 · 0 +

a3 · 0 = 0.

(c) If p(x) = a0 + a1x + a3x
2 + a3x

3, and q(x) = p(x− 1/2) is odd, what
can you say about [OLD: q(−1/2)?] the value of q(0) = p(−1/2)? How
does this relate to the discussion in this subsection?

Solution: [The problem as written had a error; the correction
is given in red.] Since q is odd, q(0) = 0, and hence p(−1/2) =
q(0) = 0. This relates to the above, since p2(n) is a polynomial
of degree 3 and has p2(−1− n) = −p(n) for infinitely many n; it
follows that p(x) defined as p2(x − 1/2) has p(−x) = −p(x) for
infinitely value of x, and hence p(−x) = −p(x) as polynomials.
[This last point was explained in class: the point is that p(−x) +
p(x) is a polynomial, and since it has infinitely many roots it must
be the zero polynomial; hence p(−x) = −p(x) as polynomials.]
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(d) We say that a polynomial p(x) = a0 + a1x + a3x
2 + a3x

3 is even if
p(−x) = p(x). For which a0, a1, a2, a3 is p even?

Solution: Similarly to the above, p is even iff a1 = a3 = 0, i.e.,
iff p(x) = a0 + a2x

2.

(e) Show that if p(x) = a0 + a1x + a3x
2 + a3x

3 is even, then p′(0) = 0
where p′ shorthand for the derivative dp/dx.

Solution: From the previous part we have p′(x) = 2a2x; hence
p′(0) = 2a2 · 0 = 0.

3.3 If f : Z→ R or f : R→ R, we say that
(a) f is odd if f(−x) = −f(x) for all x (in the domain of f).
(b) f is even if f(−x) = f(x) for all x (in the domain of f).
(a) Show that if f : Z→ R or f : R→ R, then

f(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)

2
expresses f as the sum of an even plus an odd function; in other words,
show that the first expression on the RHS (right-hand-side) is an even
function, and second expression on the RHS is an odd function, and
that the above equation is correct.

Solution: Setting

g(x) =
f(x) + f(−x)

2
then

g(−x) =
f(−x) + f(−(−x))

2
=

f(−x) + f(x)

2
= g(x).

Similarly setting g(x) =
(
f(x) − f(−x)

)
/2 we see that g(−x) =

−g(x). We easily verify the last part.

(b) If f : Z→ Z, is
f(x) + f(−x)

2
always a function Z → Z? Either (1) show that it is, or (2) give a
counterexample or show that it isn’t always.

(c) Show that if f is odd, then f(0) = 0.

Solution: The equation f(−x) = −f(x) with x = 0 yields
f(0) = −f(0) and hence 2f(0) = 0.

(d) Show that if f : R → R is odd and differentiable, then f ′ = df/dx is
even; show the same with “odd” and “even” exchanged.

Solution: The chain rule shows that if g(x) = f(−x) then
g′(x) = −f ′(−x). Hence if f is odd, i.e., f(−x) = −f(x),
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then applying d/dx to both sides yields −f ′(−x) = −f ′(x), i.e.,
f ′(−x) = f ′(x), i.e., f ′ is even. Similarly f is even implies that
f ′ is odd.

(e) Show that if f is odd and infinitely differentiable (i.e., has derivatives
to all orders), then f(0), f ′′(0), f ′′′′(0), . . . are zero. Similarly show that
if f : R→ R is even and infinitely differentiable, then f ′(0), f ′′′(0), . . .
are zero.

Solution: If f is infintely differentiable, then so are
f ′, f ′′, f ′′′, . . .. The above shows that if f is odd, then f ′ is
even, f ′′ is odd, etc. Hence f, f ′′, f ′′′′, . . . are odd, and by the
above their values at x = 0 are all 0. Similarly if f is even, then
f ′, f ′′′, f (iv), · · · are odd, and so their values at x = 0 are all 0.

(f) Show any function Z → R or R → R can be expressed uniquely as a
sum of an even plus an odd function.

Solution: If f can be expressed as g1 +h1 and as g2 +h2 where
g1, g2 are even and h1, h2 are even, then g = g1 − g2 is even and
h = h2 − h1 is odd and g = h. Since g is even, we have g(x) =
g(−x), and since g = h we have h(x) = h(−x); but since h is
odd we have h(x) = −h(−x). It follows h(−x) = h(x) = −h(−x)
so h = −h so 2h = 0 (i.e. the zero function) so h = 0 (the zero
function). Since 0 = h = h2 − h1, we have h1 = h2. Since g = h
we have g = h = 0 and hence g1 = g2.

3.5 The binomial theorem (??) for n = 4 says that

(x + y)4 = (x + y)(x + y)(x + y)(x + y) = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Notice that there are four strings with three x’s and one y:

xxxy, xxyx, xyxx, yxxx

and six strings with two x’s and two y’s:

xxyy, xyxy, xyyx, yxxy, yxyx, yyxx.

Notice that in both cases above we have listed the strings in lexicographical
order, meaning the order they would appear in a dictionary (if they were
words).
(a) List all strings of one x and three y’s in lexicographical order.

Solution:
xyyy, yxyy, yyxy, yyyx

(b) List all strings of one x and four y’s in lexicographical order.

Solution:

xyyyy, yxyyy, yyxyy, yyyxy, yyyyx

(c) List all strings of two x’s and three y’s in lexicographical order.
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Solution:

xxyyy, xyxyy, xyyxy, xyyyx, yxxyy, yxyxy, yxyyx, yyxxy, yyxyx, yyyxx

(d) Using your answer to the last part, describe—IN 15 WORDS OR
FEWER—an algorithm to list all strings of three x’s and two y’s
in lexicographical order; i.e., do not produce this list, but instead
describe how you would take the list you wrote in the last part as
input and then output a list of all strings of three x’s and two y’s.

Solution: List the strings in reverse order and exchange the x’s
and y’s.

(e) Explain how the number of elements in some of your lists above relate
to the binomial theorem

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5y4 + y5.

Solution: When you write (x + y)5 as

(x + y) (x + y) (x + y) (x + y) (x + y)

and expand näıvely (i.e., without collecting terms), you get 32
strings of x’s and y’s; when you collect terms you see the binomial
coefficients.

3.7 Prove (??) (i.e.,
(
1
k

)
+ . . .+

(
n
k

)
=
(
n+1
k+1

)
) directly, by noting that its right-

hand-size represents the number of strings of n − k x’s and k + 1 y’s, and
using the fact that each such string begins with some number of x’s before
it encounters its first y.

Solution: Each string, s, with n− k x’s and k + 1 y’s must have at
least one y (we assume k ≥ 0 so k + 1 ≥ 1); the string s must begin
with some number of x’s, say m of them (m = 0, 1, . . .), followed by a
y, then there are n+ 1− (m+ 1) = n−m letters left, k of which must
be y’s. Hence(

n + 1

k + 1

)
=

∑
m=0,1,...

(
n−m

k

)
=

(
n

k

)
+

(
n− 1

k

)
+ · · ·+

(
k

k

)
;

we can add
(
k−1
k

)
,
(
k−2
k

)
, . . . ,

(
1
k

)
to the RHS (right-hand-side) since

they are zero.

3.9 Compute the function (Df)(n) for all n ∈ N:
(a) f(n) = (n− 1)2;

Solution:

f(n + 1)− f(n) = n2 − (n− 1)2 = 2n− 1.

(b) f(n) = (n− 1)n(2n− 1)/6;
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Solution:

f(n + 1)− f(n) =
n(n + 1)(2n + 1)

6
− (n− 1)n(2n− 1)

6

= n
(n + 1)(2n + 1)− (n− 1)(2n− 1)

6
= n

6n

6
= n2

(c) f(n) =
(
n
4

) def
= n(n− 1)(n− 2)(n− 3)/24;

Solution:

f(n+1)−f(n) =
(n + 1)n(n− 1)(n− 2)

24
−n(n− 1)(n− 2)(n− 3)

24

= n(n− 1)(n− 2)
(n + 1)− (n− 3)

24
= n(n− 1)(n− 2)

4

24
=

(
n

3

)

(d) f(n) = −(1/3)n−1/2 and simplify your answer.

Solution:

f(n+1)−f(n) =
−(1/3)n − (1/3)n−1

2
= −(1/3)n

1− 3

2
= (1/3)n.

(e) Show how (??) (i.e., (SDf)(n) = f(n + 1) − f(1)) and the above
computations yield the following formulas:

1 + 3 + 5 + · · ·+ (2n− 1) = n2,

1 + 22 + 32 + · · ·+ n2 = n(n + 1)(2n + 1)/6,(
1

3

)
+

(
2

3

)
+ · · ·+

(
n

3

)
=

(
n + 1

4

)
(1/3)1 + (1/3)2 + · · ·+ (1/3)n =

1− (1/3)n

2
,

Solution: They all arise from the formula

(SDf)(n) = f(n + 1)− f(1);

for example, in the first case f(n) = (n− 1)2 we have

f(n + 1)− f(1) = n2

while

(SDf)(n) =

n∑
m=1

(Df)(n) =

n∑
m=1

(2m−1) = 1+3+5+· · ·+(2n−1),

and similarly for the other formulas.
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