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Final 2012WT1, Problem 8

[Done via polar coordinates.]
The equation x2 + y2 = x is the same as (x2− x) + y2 = 0, which by completing

the square (as in Section 12.1 of the textbook)

(x− 1/2)2 + y2 = x2 − x+ (1/4) + y2 = 1/4,

which is the circle of radius 1/2 centred at (1/2, 0). Hence the interior of this circle
lies in the unit disc, and is described by the equation

(x− 1/2)2 + y2 ≤ 1/4, i.e., x2 + y2 ≤ x;

in polar coordinates this amounts to

r2 ≤ r cos θ .

This always holds at r = 0; for r > 0 this means that r ≤ cos θ, which is impossible
for θ with cos θ < 0, while for θ with cos θ ≥ 0 this region is desribed by

0 ≤ r ≤ cos θ.

Hence the crescent, which is the unit disc with the above circle interior taken
away, descibed by

cos θ ≤ r ≤ 1, for −π/2 ≤ θ ≤ π/2, and

0 ≤ r ≤ 1, for π/2 ≤ θ ≤ 3π/2.

It follows that the mass of the crescent with unit density is∫ θ=π/2

θ=−π/2

∫ r=1

r=cos θ

r dr dθ +

∫ θ=3π/2

θ=π/2

∫ r=1

r=0

r dr dθ

=

∫ θ=π/2

θ=−π/2
r2/2

∣∣∣r=1

r=cos θ
dθ +

∫ θ=3π/2

θ=π/2

r2/2
∣∣∣r=1

r=0
dθ

=

∫ θ=π/2

θ=−π/2
(1− cos2 θ)/2 dθ +

∫ θ=3π/2

θ=π/2

(1/2) dθ

=

∫ θ=π/2

θ=−π/2
sin2 θ(1/2) dθ + π/2
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which, using sin2 θ = (1− cos(2θ))/2 is

=

∫ θ=π/2

θ=−π/2
(1− cos(2θ))/4 dθ + π/2 = π/4 + π/2 = 3π/4.

We similarly compute the integral over the crescent of x = r cos θ to be∫ θ=π/2

θ=−π/2

∫ r=1

r=cos θ

r2 cos θ dr dθ +

∫ θ=3π/2

θ=π/2

∫ r=1

r=0

r2 cos θ dr dθ

which, since r2 dr integrates to (1/3)r3, is

=

∫ θ=π/2

θ=−π/2
(1/3)(1− cos3 θ) cos θ dθ +

∫ θ=3π/2

θ=π/2

(1/3) cos θ dθ

=

∫ θ=π/2

θ=−π/2
−(1/3) cos4 θ dθ +

∫ θ=π/2

θ=−π/2
(1/3) cos θ dθ +

∫ θ=3π/2

θ=π/2

(1/3) cos θ dθ

=

∫ θ=π/2

θ=−π/2
−(1/3) cos4 θ dθ +

∫ θ=3π/2

θ=−π/2
(1/3) cos θ dθ .

Since the integral of cos θ is sin θ we see that the second integral above is 0, which
leaves the above equal to ∫ θ=π/2

θ=−π/2
−(1/3) cos4 θ dθ ;

by the formula on the sheet this integral equals −π/8. Hence, setting R to be the
crescent interior, we have—given the constant density of 1—that

x =

∫ ∫
R
x dA∫ ∫

R
dA

=
−π/8
3π/4

= −1/6.

Problem 2

We have ∫ ∫
D

x dA =

∫ x=x0+r

x=x0−r

∫ y=y0+
√
r−(x−x0)2

y=y0−
√
r−(x−x0)2

x dy dx

(1) =

∫ x=x0+r

x=x0−r
2
√
r2 − (x− x0)2 x dx .

We evaluate this integral by substitution: recall that to integrate (1 − t2)1/2 we
use the substitution t = cosφ; similarly to integrate (a2 − t2)1/2 for any constant
a we set t = a cosφ; the analogous substitution here is x − x0 = r cos θ: the main
justification for this is that√

r2 − (x− x0)2 =
√
r2 − r2 cos2 θ =

√
r2 sin2 θ = r| sin θ|,

and

dx = r(− sin θ) dθ ;
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also note that θ = π at x = x0 − r and θ = 0 at x = x0 + r; furthermore sin θ ≥ 0
for θ between π and 0, so | sin θ| = sin θ in this range. So the above integral
(Equation 1) becomes (remember that x = x0 + r cos θ)∫ θ=0

θ=π

(r 2 sin θ)(x0 + r cos θ)(−r sin θ dθ) =

∫ θ=π

θ=0

(2r2x0 sin2 θ + r3 sin2 θ cos θ) dθ

(where the right-hand-side is the left-hand-side with the integration limits θ = 0
and θ = π exchanged, getting rid of a minus sign in the process)

=

∫ θ=π

θ=0

2r2x0 sin2 θ dθ +

∫ θ=π

θ=0

r3 sin2 θ cos θ dθ .

The sin2 θ cos θ integrates to sin3 θ/3, and to integrate sin2 θ we use sin2 θ = (1 −
cos(2θ))/2, whose integral is θ/2− sin(2θ)/4; hence the above integral becomes[

2r2x0
(
θ/2− sin(2θ)/4

)
+ r3(sin3 θ)/3

] ∣∣∣θ=π
θ=0

=
[
2r2x0(π/2)− 0 + r3 0

]
−
[
2r2x0 0− 0 + r3 0

]
= x0πr

2 .

Hence ∫ ∫
R

x dA = x0πr
2 .

Intuitively we know that (by “symmetry”) the centre of mass of a circle should
be its centre, so x, its average x-coordinate, should be x0 times the area of the
circle interior, πr2.

Problem 3

Let C1 be the interior of the unit circle, x2 + y2 = 1, and C2 be the interior of
the circle within x2 + y2 = x, so that the crescent, R, in the final exam problem
above is just C1 with C2 removed.

We have∫ ∫
R

dA = area(C1)− area(C2) = πr2 − π(r/2)2 = πr2(3/4).

Similarly, using Problem 2, we have∫ ∫
R

x dA =

∫ ∫
C1

x dA−
∫ ∫

C2

x dA

= 0 · area(C1)− (1/2) · area(C2) = −(1/2)π(1/2)2 = −π/8,

and so the centre of mass of R with constant density 1 is

x =

∫ ∫
R
x dA∫ ∫

R
dA

=
−π/8
3π/4

= −1/6.
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