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Final 2013WT1, Problem 3(a)

We have

∇f = 〈fx, fy, fz〉 = 〈2(x− 2), 2(y − 1), 2z〉
and for the constraint g(x, y, z) = 1 with g = x2 + y2 + z2

∇g = 〈gx, gy, gz〉 = 〈2x, 2y, 2z〉.

Solving ∇f = λ∇g gives

x− 2 = λx, y − 1 = λy, z = λz.

Perhaps the simplest place to start is z = λz: this means that either λ = 1 or z = 0.

(1) Case λ = 1: so z can be anything (so far), but x−2 = x which is impossible.
(2) Case z = 0: so λ can be anything so far, but based on y − 1 = λy and

x− 2 = λx we can eliminate λ: we have

λ = (y − 1)/y = (x− 2)/x,

unless either y or x is zero. So we get some subcases:
(a) y and x not zero: (y − 1)/y = (x − 2)/x, so cross multiplying gives

y(x− 2) = x(y − 1), and hence x = 2y. Since z = 0 already, and now
x = 2y, we get

1 = x2 + y2 + z2 = (2y)2 + y2 + 02 = 5y2

so y = ±1/
√

5 and x = 2y. So we check

f(2/
√

5, 1/
√

5, 0) = 6− 10/
√

5, f(−2/
√

5,−1/
√

5, 0) = 6 + 10/
√

5.

(b) y = 0: so also z = 0, so x2 + y2 + z2 = 1 implies that x = ±1, and we
find

f(1, 0, 0) = 2, f(−1, 0, 0) = 10

(the value of λ not particularly needed).
(c) x = 0: simimilarly y = ±1, and we find

f(0, 1, 0) = 4, f(0,−1, 0) = 8.
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So the min of f on g = 1 is the smallest and largest from among the values

6± 10/
√

5, 2, 10, 4, 8,

namely 6− 10/
√

5.

Final 2013WT1, Problem 4(b)

With notation as above, we have

f(x, y, z) = (x2 + y2 + z2 + 5)− 4x− 2y.

Since the constraint reads z2 = 1− x2 + y2, we can write that

x2 + y2 + z2 = 1 implies f(x, y, z) = 6− 4x− 2y.

But this expression 6 − 4x − 2y does not involve z; the only constraint on x and
y is that for some z we have x2 + y2 + z2 = 1, and this means that x2 + y2 ≤ 1.
So Problem 3(a) is equivalent to minimizing h(x, y) = 6 − 4x − 2y on the region
x2 + y2 = 1.

Final 2012WT1, Problem 6(i)

Here we have

∇f = 〈fx, fy, fz〉 = 〈2(x− 2), 2(y + 2), 2(z − 4)〉
and for the constraint g(x, y, z) = 6 with g = x2 + y2 + z2

∇g = 〈gx, gy, gz〉 = 〈2x, 2y, 2z〉.
Solving ∇f = λ∇g gives

x− 2 = λx, y + 2 = λy, z − 4 = λz.

This means that

λ =
x− 2

x
=
y + 2

y
=
z − 4

z

provided that x, y, z are all non-zero. So we get the following two cases: x, y, z are
all non-zero, or at least one of x, y, z is zero.

(1) In case x, y, z are all non-zero: then

x− 2

x
=
y + 2

y
=
z − 4

z
,

an in particular

x− 2

x
=
y + 2

y
so (x− 2)y = (y + 2)x

so −2y = 2x or x = −y; also

y + 2

y
=
z − 4

z
so (y + 2)z = (z − 4)y

so 2z = −4y so z = −2y. So we get x = −y and z = −2y and we solve

6 = x2 + y2 + z2 = (−y)2 + y2 + (−2y)2 = 6y2,

so y = ±1, 〈x, y, z〉 = ±〈−1, 1,−2〉 and we check

f(−1, 1,−2) = (−1− 2)2 + (1 + 2)2 + (−2− 4)2 = 9 + 9 + 36 = 54,
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and

f(1,−1, 2) = (1− 2)2 + (−1 + 2)2 + (2− 4)2 = 1 + 1 + 4 = 6.

(2) In case at least one of x, y, z is zero: lets say x = 0. Then we have

x− 2 = λx = 0,

so x−2 = 0, which is impossible. Similarly y = 0 and z = 0 are impossible.

Hence the min of f subject to g = 6 is 6, and its max is 54.

Final 2012WT1, Problem 6(ii)

The point that is farthest from (2,−2, 4) is just the point that maximizes

(x− 2)2 + (y + 2)2 + (z − 4)2.

But this just happens to be the function f in Problem 6(i). So we already know
that this function is maximized at 〈−1, 1,−2〉.
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